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Our formulas for the Weyl conform tensor components generalize results published earlier by Z. 
PeIjes for vacuum fields. We also offer an abstract version of these equations which may shed some 
light upon their structure. The expressions for the Weyl conform tensor are specialized to the case of 
small perturbations from a stationary axially symmetric background geometry. The resulting 
formulas supplement the expressions which Chandrasekhar and Friedman have developed for the 
components of the Ricci tensor. We anticipate that this will facilitate the comparison of the CF 
perturbation theory with the recent studies of perturbations of the Kerr metric by Press, Teukolsky, 
and Waldo In this connection we identify in terms of the CF field variables the fields which are 
involved in Teukolsky's separable field equations. 

I. STATIONARY FIELDS 

As in our earlier workl on stationary axially sym
metric gravitational fields, we shall find it convenient 
to introduce a complex null tetrad system, 

t= (el +ie2)/2l /2, t* = (e1 _ie2)/2l/2, 

k=(e3 _e4 )/21 / 2 , and m=(e3 +e4 )/21 / 2 , 

where 

(1) 

e! = rl!2ei (i == 1,2,3) and e4 =.j1/2 (dT - W'). (2) 

The five complex scalar fields C j (i = - 2, .•. , + 2) as
sociated with the Weyl conform tensor2 are then given 
by the following expressions: 

C2 - !Rtt = - h ri(dQ. + 'U-1Gg ,!, (3a) 

C1 +t(R1tt +Rmt) 

= (1/4v'2)[K r(dQ. +!r1GQ.h! 

+ 'T r '(dQ. +! rlGg -, I~J, 

CO + R/12 - t(R~1< + Rmm) 

= H'T r!(dQ.+irlGQ.)-, T 
+'T* r{dQ.+!r1Gg., 'T-rlQ..,IQ.}, 

Col - t(R"t* + Rmt*) 

= (-1/ 4{2)[K r (dQ. + !r1GQ.)" T 
+ 'T* r (dQ. + Y-1Gg) ..,~], 

(3b) 

(3c) 

(3d) 

(6b) 

R' + 6tR:= f(3)Rl + tr1e i r '(G*Q. + GQ.*)"~, (6c) 

where the symbol * denotes the 3-dimensional duality 
operator; i.e., *€J =e~€1 (j,k,l cyclic). 

To render these equations into a form analogous to 
that to be found in the article of Perjes5 we introduce an 
imaginary 1-form U and a complex l-form V such that 

(7) 

Components of such forms relative to the triad 'T, 'T*, " 
are denoted by subscripts; e.g., U.==K rU. In partic
ular, Eqs, (3a) through (3e) assume the following form: 

C2 -tRtt==-U(d.,.G.,.+VP.- U.,.G.,.) + i-r1G;] , (Sa) 

C1 +~RItt +Rmt > 

= (1/4v'2)[(d.G.,.+ V.G. - U.G~) 

+ (d.,G" - VP,.* - V,-**G.,) + r1G"G.,] , (Sb) 

Co + R/12 - HR~k + Rmm> 

=t[(d,-*G.,. + V.,.*GK - U.,*G.,} + (d.,G-r* + V -r**G. + U.,G.,*) 

- r1G.,.G-r* - rlG~], 

COl - t(R1tt* + R mt*) 

= (-1/4$)[{d.Gr + V.*G. + U.G,-*) 

+ (d.,*G. - V.,*Gr - ~G.,) + r1G.G.,*], 

C.2 -!Rt*t* -U{d.,.*GT* +~GK+U.,*G.*)+!rlG~*]. 

(Sc) 

(Sd) 

Co2 -!Rt*t* = - h* r {dQ.+!r1Gg ','!*' (3e) (Se) 

where the triad 'T, 'T*, "is defined by 

'T=(e1 +i€2)/21/2, 'T*=.(e1 _i€2)/21 / 2, K=E3. (4) 

The symbols rand., denote the 3-dimensional Grass
man inner products3 for differential forms and tangent 
vectors, respectively. The latter are always distin
guished from the former by underscoring. 

It was shown in an earlier paper4 that the complex 
1-form 

G=df-if2* dw (5) 

also occurs conspicuously in the Ricci tensor, the ortho
normal componeMs of which are given by the following 
express ions: 

(6a) 
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In comparing these results with those of Perjes, one 
should note that an unfortunate factor 1/ (2j) was included 
in the G field of Perjes, and our sign conventions are 
different. Aside from that our Eqs. (Sa) through (Se) 
constitute a nonvacuum generalization of formulas given 
by Perjes. 

The most significant components of the Ricci tensor 
will be written in a similar manner; namely, 

R 44 =U(d,..G,,- V"G-r* - V:GT) 

+ (d.,.G,-* + VT**G. + U.,G,-*) 
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(9a) 

(9b) 

(9c) 
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RM +Rmt = 21/2j[(S)RKT +ir2 (Gp.,.* +GTG~)J. (9d) 

The components of the 3-dimensional Ricci tensor are 
given in turn by 

(S)RKK = 2(KT"') r (dV - UV) 

= 2[(dK VT* + V:VK + UK V.,.) (lOa) 

- (~VK - V;' - V:VT) - UK V.,. - VT*VKJ, 

(3) RTT = (Kr) r (dV - UV) 

= (dK VT + V!- UK VT) - (dTVK - VTV T* - VT**VT) 

-UKVT+UTVK, (lOb) 

(3'RKT = (n*) r (dV - UV) 

= (dTV T* + V T**VK + UTV.,.) (lOc) 

- (dT*VT+ VT* VK - UT* VT) - UTVT* + UT* v: . 
II. CHOICE OF TRIAD 

In the case of stationary space-times with geodetic 
eigenrays, one may introduce a Perjes triad; i.e., a 
triad such that GT = VK = O. Such space-times have been 
the subject of a recent investigation by Kota and 
Perjes. 6 

More generally it might be advantageous to choose a 
triad such that G. = O. However, because our principal 
objective in this paper is to facilitate a comparison of 
the Chandrasekhar-Friedman7 and the Press
Teukolsky-Wald8 treatments of perturbations of the 
Kerr metric, we shall direct our attention to an alter
native triad chOice for which U.=1mVT=1mVT* =0. 

From the definitions, Eqs. (7), of the fields U and V 
we may infer that 

dK= V*r+ VT'" and dr= Ur- VK. (11) 

Under the assumption that ImVT* =0 there are no rT'" 
terms in the first of these equations. By the Frobenius 
theorem there must exist real fields Rand cP such that 
K = R dcp. Under the further assumption that 1m V

T 
= 0 

we may define a real field a such that VT = - d.a. It is 
then possible to establish the existence of fields P and 
t such that 

rcosha + r* sinha =P-1dt. 

Thus, we arrive at the Chandrasekhar-Friedman triad 

K =RdCP, r = P-l[coshadt - sinhadt*], 

for which 

UK=O, UT= - dT(lnP) +dT*a, U.,. = dT*(InP) - dTa, 

V.=-dT(lnR), VT=-d.a, VT*=-d.(lnP), 

d. =K1 ajacp, dT= ~1/2P[coshaV +sinhaV*]. 

(12) 

(13) 

By substituting Eqs. (13) into Eqs. (8), (9), and (10) one 
may derive the CF form of the equations governing 
stationary gravitational fields. 

III. PERTURBATION THEORY 

We shall restrict attention to stationary vacuum· 
fields which are almost axially symmetric, for which we 
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may write 

dT=~1/2P(V+05av*) and dT*=2-1/ 2P(V* +05av). 

(14) 

The first-order perturbations of the vacuum field equa
tions assume the following form: 

0= 05R44 = iR-l[l5 (Rt5*05e) +15* (Rt505e)] 

+ HlS05(lnR)l5*e +15*05 (InR)l5eJ 

- ~rl[lSel5* (05e) +15 (05e)!5*e] 

+ h-105(lnf)!5el5*e 

+ ~R-l[lS (R05~e) +'15* (R05al5*e)] 

02 

-~rl[05a(lSe)2 + 05a(lS*e)2] + ~R-2 act} (05e), 

0= 05 [j-lR"mJ= M-~*lS(05R) 

+ ~R-l[lS (05aM) +'15* (05al5* R)] 

02 

- R-2 a cp2 05 (InP) , 

0= 05 [j-lRtt J = ~1S['I505 (InR)j +'15 (InR)l505 (InR + InP) 

+ir2['I5e'15(05e*) +'I5(05e)l5e*] 

-~r205(lnf)'l5e'15e* 

- ~*(05a)!5(lnR) + ~(05a)l5* (InR) 

+ lf205a [lSe'I5*e* +15*e'I5e* J 

02 

_R-2 acp2 (05a), 

0= 05 [j-l (R"t +R"'t)] 

=~{'I5*(R-l05a) -'I5[R-105(lnP)] acp 

+ iWl r 2C5e*05e +'I5e05e*)}. 

(15a) 

(15b) 

(15c) 

(15d) 

The last of these equations is deSignated by 
Chandrasekhar and Friedman as an "initial value" equa
tion, while the others are "dynamical" equations. By 
treating the fields 05a and 05a as fields of spin weights 
+ 2 and - 2, respectively, we have been able to make 
use of the "thop" idea introduced in Ref. 1. 

All of the foregoing equations may be expressed in 
terms of the notation of Chandrasekhar and Friedman 
by making the substitutions 

R =err+f>, f= e2n , P=e-n-u., a = r, 

(16) 

05E = 2e2n05n + iQ, Ve = 2e2nVn - e3n-PV w. 

For example, the dynamical equation for Q arises from 
the imaginary part of Eq. (15a): 

~v(e-3n+t>v*Q) + ~V* (e-3n+t>VQ) 

+ e-3n-p+2U."£:' (fJ) a cp2 l( 

+ ~iV[(305n - 05p)V*w + 205rVw] 

- ~z'V*[(305n - op)Vw + 205rV*w] = O. 

(17) 

On the other hand the initial value equation assumes the 
form 
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~[V(On+ O/J.) - Vp(On + O/J.) +Vn(On - O/J.) 
acp 

+1ie-n-IVwQ + V* (OT) + V* (n - P + 2/J.)OT] = O. 

(18) 

Equations (17) and (18) should be compared with CF Eq. 
(45) and CF Eq. (43), respectively. 

We shall not write out the other dynamical equations, 
for they have been given by Chandrasekhar and Fried
man, and the above examples should suffice to show the 
relation between their formalism and ours. 

In CF perturbation theory it is impossible to assess 
results without a knowledge of the curvature tensor. 
Therefore, we offer the following expressions for the 
perturbations of the five complex scalars associated 
with the Weyl conform tensor: 

liC2= 2C21i(lnP) - ~~ (liE) -~Ii(lnPF5E 

- ir~€!5(lie) + trIIi(lnf)(~e)2 

- !lia~~E + i15*(liaF5e - ~(lia)l5*E 

liCI = i oOcp {l5(R-llie) + W lli(lnP)l5e 

+ R-lli~*E +! rlR-lli€!5e}, 

Ii Co = 2 Coli (lnP) + ~~(lie) - tr~€!5*(liE) 

- tr~(lie)~*e + trlli(lnf)l5€!5*e 

+ ~* (lial5*e) + ~ (lial5E), 

liC_l = - i aOcp {l5* (R~llie) + R-lli(lnP)l5*E 

+ R-lliiiiSe + !rlWlM5*e}, 

Ii C_2 = 2C_21i(lnP) - il5*l5* (lie)\- !l5*Ii(lnP)l5*e 

- ir~*€!5* (liE) + tt-lli (lnf)(!5*E)2 

- !lial5*l5e + il5(lia)l5*E - il5* (lia)l5e 

- h- l lial5€!5*e. 

(19a) 

(1gb) 

(19c) 

(19d) 

(1ge) 

It should be noted that throughout this section we have 
taken advantage of the vacuum field equations in order 
to introduce a complex potential E such that G = de. 9 

IV. PERTURBATIONS OF THE KERR METRIC 

In order to identify the fields which satisfy Teukolsky's 
separable wave equations, we turn our attention to the 
relation between the Kinnersley tetradlO 

k' = dT - a sin20dcp + (pp* Ll)-ldr, 

m' = dr - !pp*Llk', (20) 

t' = 2-l / 2p-l{dO+ ipp* sinO[a dT - (r2 + w)dcp]), 

and the tetrad k, m, t, t* which we have been employing 
in this paper. A straightforward calculation results in 
the relations 

k' = 2l / 2 (pp*Ll)-1/2[Ret - !(Ak - A-1m )], 

(21) 
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A2 = (Lll/2 +asinO)/ (Lll/2 - a sinO). 
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The corresponding relations between the bivectorsll are 

(pLll/2)B~= 2-l / 2i[AB+ + Bo + A-IB.) , 

B~ = - AB+ + A-lB_, (22) 

(pLll/2)"IB~= !2-1/ 2i[ - AB+ + Bo - A-IB.). 

In particular, it should be noted that B~ and B~ are the 
prinCipal null bivectors of the type D Kerr field. 

From Eqs. (22) we may immediately infer that the 
Weyl tensor components Ci relative to the Kinnersley 
tetrad are related to the Weyl tensor components CJ 
relative to our tetrad as follows: 

(p2Ll)q = - !A2C2 + 2ACI - ico + 2A -IC_l -!A -2C_2 , (23a) 

4(p2Ll)-IC_~ = - !A2C2 - 2AC1 - ico - 2A -lC_I -!A -2C_2• 

In the case of the Kerr metric one has 

E=1- 2mp, R =Ll1 /2 s inO, 

P= (Ll - a2 sin20)-1/2 and V = Lll /2i..+ i..i. 
, or ao' 

(23b) 

(24) 

Of course, both q and C~2 vanish for the unperturbed 
field. The quantities which satisfy Teukolsky's separ
able wave equations are liq and p-4liC~20 Fortunately, 
both of these quantities are invariant under infinitesimal 
null rotations. Therefore, it suffices to correlate 
infinitesimal perturbations of our tetrad with infinitesi
mal perturbations of the Kinnersley tetrad using Eqs. 
(21). Accordingly, Eqs 0 (23a) and (23b) provide the re
lation between the fields which satisfy Teukolsky's 
equations and the perturbed fields liC i (i = - 2, .•• , + 2), 
which are given in turn by Eqso (19). 

In the near future it is anticipated that a jOint effort 
will be undertaken with So Chandrasekhar to clarify 
further the relation between CF perturbation theory and 
the recent investigations of Press, Teukolsky, and 
Wald, particularly as regards inferences which may be 
drawn concerning the stability of the Kerr metric. The 
formulas which we have displayed in this paper will 
play an important role in our subsequent efforts. In ad
dition, it is hoped that Eqso (3) for the Weyl tensor of 
stationary fields will be found useful by other 
researchers. 
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We have obtained a set of homogeneous linear equations in the Clebsch-Gordan coefficients for the 
Kronecker inner direct product of two irreducible corepresentations of a finite magnetic group. The 
solutions of these equations give the Clebsch-Gordan coefficients even when the group is not simply 
reducible. The nontrivial Clebsch-Gordan coefficients for the magnetic group C 4 ,(C2') have been 
evaluated. We have also investigated the criterion determining whether a particular irreducible 
corepresentation is equivalent to its complex conjugate representation. A projection operator has 
been constructed for obtaining the basis pertaining to a particular irreducible corepresentation. 

1. INTRODUCTION 

The physical properties of magnetic crystals are 
governed not only by groups of space rotations (proper 
and improper) and translations of space but also by 
groups which contain time reversal either singly or in 
conjunction with other rotation or translation operators. 
The group elements that contain time reversal are 
antilinear operators. 1,2 The symmetry group M of order 
I M I for such systems contains an invariant subgroup 
G of index 2 containing unitary and linear operations 
on space and a coset of unitary antilinear operations 
containing time reversal. 

( 1) 

ao is an antilinear operator containing the time reversal 
operator e. ao can be written as 

ao evo, (2) 

where Vo is a fixed linear operator so that 

v~EG. 

The representation theory of such groups has been 
worked out in detail by Wigner, I Dimmock and Wheeler, 3 

and by Dimmock. 4 This has been summarized in Sec. 2. 
The application of this theory to magnetic space groups5 
is also extensive. 6-12 In Sec. 3 we have constructed the 
projection operator for obtaining the basis functions for 
an irreducible corepresentations. Their orthogonality 
properties have also been investigated here. Krocecker 
inner direct product of two irreducible corepresentations 
as also the frequency of a particular irreducible corep
res entation in the Clebsch-Gordan series can be ob
tainedl3

,14 from the unitary linear subgroup G of M. 
However there is no simple relation for obtaining the 

. actual Clebsch-Gordan coefficients as exists! for uni
tary linear groups. This is due to the peculiar form of 
orthogonality relations for irreducible corepresenta
tions. 4 In Sec. 4 we have obtained a set of homogeneous 
linear equations in the Clebsch-Gordan coefficients, 
the solution of which gives these coefficients for each 
multiplicity. As an example we have worked out the 
nontrivial case for Ch (Cav)' For linear groups 
. Frobenius and Schur analysed15 the condition for the 
equivalence of an irreducible representation with its 
complex conjugate. In Sec. 5 we have extended this 
procedure for irreducible corepresentations. 

2. COREPRESENTATIONS OF MAGNETIC GROUPS3,4, 14 

The standard results of corepresentation theory have 
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been summarized here for later references. We denote 
the elements of the linear subgroup G of M by u and ele
ments of the coset aoG by a. e commutes with any linear 
operator. When we consider the representation matrix 
D(e2u), we put 

w= 11 
-1 

for bosons or even 
number of fermions, 

for odd number of fermions 
when spins are considered. 

The corepresentation matrices satisfy 

D( cx)Da (f3) = D( cxf3), V cx, f3 EM. 

(3) 

(4) 

A groop element cx EM used as the superscript of either 
a matrix or a complex number will mean 

{
A, ifaEG, 

Aa = A*, if cxEM-G, 

where A is either a matrix or a complex number. Two 
corepresentations D and D' are V equivalent (we write 
D'· ¥;. D) if there exists a nonsingular matrix V such 
that 

D'(u) = V-ID(u)V, Vu E G, 

* D'(a)=V-1D(a)V, VaEM-G. 
I 

(5) 

A similar notation will be used for equivalent represen
tations of linear groups. The bases hM forming D and 
11/1:> forming D' will have the properties, 

Oa I ~i) = L; D( cx)j; 11/Ij), 
j 

Oa 11/I:>=L; D'( cx)H !1/If), 
j 

11/I;)=L;vn I1/lJ)' (6) 
J 

where Oa's are the Wigner operators for CXE M. The 
definition of reducibility is the same as for linear 
groups compatible with the transformation rule (5). 
The corepresentation matrices can be taken as unitary 
just as in the case of linear groups. Also Maschke's 
theorem of reducibility meaning full reducibility is 
valid. 

Schur's lemma for the same irreducible corepresen
tation16 D'" would take the form: 

If there exists a matrix N, having at least one real 
eigenvalue, satisfying 

Copyright © 1974 American Institute of Physics 2031 
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ND'" (u) =D'" (u)N, ND"'(a) =D"'(a)N* 

for all u E G and for all a E M - G 
then N = r· E, where r is a real number. 

(7) 

The restriction that N shall have at least one real eigen
value is essential. If N is a Hermitian matrix it satis
fies this restriction and we get the form given by 
Dimmock.4 Because of this restriction on N, the orthog
nality relations for the irreducible corepresentations 
take the rather inconvenient forms4 

~D"'(u)lmU(u)jn= 0, 
U 

2]D'" (a)lnDV(a)jm = 0, (8) 
a 

ifff.~.U, 

and 

2]D" (U)i~" (u)jn + ~D" (a)lnD'" (a)jm = Id
M 

I 61} 6mn • 
U a U 

(9a) 

Also 

2] Ix"(u) 12 + 2] X" (a2
) = IMI, (9b) 

U a 

where 

x"(a)=Trace D"'(a). 

Here d" is the dimension of the irreducible corepresen
tation. This inconvenient form of the orthogonality re
lations and the fact that the traces of the matrices for 
the antilinear operators are not invariant for equiva
lent corepresentations[cf. Eq. (5)] makes the powerful 
method of group algebra and characters inapplicable to 
magnetic groups. 

Wigner's analysis1 using the irreducible representa
tions of G to classify the complete set of irreducible 
corepresentations D" of M in 3 types gives the following 
result. 

(i) Type a 

f::l.P. (u);: f::l." (aa1uao) * = p-1f::l." (u)P, 'flu E G 

with 

PP*= + f::l."(~). 

In this case 

D" (u) = f::l.U (u) 

and 

and 

2]1x"(u)12= IMI/2,2]x"(a2)= IMI/2. 
u a 

(lOa) 

A necessary and sufficient condition for this case to 
happen is that the trace 1/!"(u) of f::l."(u) will satisfy 

2]1/!"(a2
) = IGI = IMI/2. (lOb) 

a 

(ii) Type b 

f::l.'"(u);: f::l.'" (aa1uao)* = p-1f::l.'" (u)P, 'flu E G 

with 

PP*= - f::l."(~). 
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In this case 

DU(u) = (f::l."'o(u) 0 \ 
\ f::l."'(u)j' 

(0 -f::l." (aa(/)p) 
D"(a) = \f::l." (aaa1)P 0 ' 

and 

2]1x"(u) 12= 2 ·IMI 
u 

and 

(Ha) 

The necessary and sufficient condition for this case 
is 

2]l/!"(a2)=-IGI=-IMI/2. 
a 

(iii) Type c 

f::l.ii(u);: f::l."(aQ1uao)*· ~·f::l."'(u), 

i. e., 

2]1/J"(U)1/!ii(u)* = 0, 
u 

where 1/J" and 1/!ii are the traces of f::l." and f::l.'", 
respectively. 

In this case 

D'" (u) = (f::l."o(u) 0) 
f::l."(a(jluao)* ' 

and 

The necessary arid sufficient condition is 

These notations will be retained in all subsequent 
sections. 

3. PROJECTION OPERATORS 

(Hb) 

(12a) 

(12b) 

We first outline the procedure for obtaining the basis 
functions that transform according a particular irre
ducible corepresentation D". In this section and later 
on a particular corepresentation will be assumed to be 
irreducible unless mentioned otherwise. Wigner has 
given1 the prescription for obtaining the bases 11JIt) of 
D" starting from I cpr> the bases for f::l."'. A convenient 
method will be defining a projection operator1 pr whose 
action on any arbitrary I1/!) will be the basis function 
11JIt) other than a normalization constant. One such 
projection operator is 

pr =2]D"(u)1100 u+ 2]D"(a) T1 oOa (13) 
u a 
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so that 

P't 11P) =A l1Pf), 

with 

(14) 

where O",'s are the Wigner operators corresponding to 
ex EM. The proof that 11Pt) of (13) transform according 
to D" is straightforward. If D"'s in Eq. (13) are re
placed by the projective corepresentations12.14.17 D""" 
defined by 

(15) 

with Iw(ex, (3) 1= 1 and the w(ex,(3)'s satisfying14 

w( ex, (3)Yw( ex(3, y) = w(ex, (3y)w((3, y) 'if ex, (3, y EM (16) 

then the resulting Pf'" acting on 11P) will give the bases 
l1Pf''') pertaining to D"'·". The only restriction is that 
the starting function should be such that 

O",Oa 11P) = w( eM, (3)O",a 11P). (17) 

For example if D""" is a double group representation, 
11P) should be half-integral spin states. This proof is 
also straightforward manipulation with the w(ex, (3)'s. 
We now investigate the orthogonality of the bases ob
tained according to Eqs. (13) and (14) for D". 

If D" is of type (a), the dimension d" of D" is the 
same as the dimension of 1::." and 

and 

(18) 

If D" is of type (b), the dimension d" of DU is twice 
the dimension of 1::.". We can choose io in Eq. (13) so 
that io~d,,/2. We divide the bases of D" in two groups 

I Il, i) =A ~I::." (U)tloOu 11P) 

and 

with i ~ d,,/2. 

We obtain 

(Il: i'l Il, i) = (Il: {dj2) + ill Il, (d,,/2) + i) 

(Il: i'l Il, (dj2) + i) '= 0":,, 0ill 

xq:;[I::."(aao 1)p]toi o(1P10.11P)} 

x[~I::."(u)tolo(1PIOul1P)]"\ (20) 

for i', i ~ d,,/2. 

If D U is of type (c) the dimensionality d of D" is again 
. " tWlCe that of A" and we can choose io ~d,,/2. 
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Here also, 

IIl,i)=A~I::."(U)ti Oul1P), 
u 0 

I Il, (d,,/2)+i)=A~I::."(ai/a)HoOal1P),i ~dj2, 
(Il: j' Ill, j) = 0":,, ow' j: j ~ d". (21) 

In all the deductions we have used the following prop
erty of scalar product for linear and antilinear 
operators. 

(0.,E1P1 O.,E'f)=EE'*wl 0.,-1.11P), 

(0.,E1P I OuZ1P~ = EZ'(1P1 O.-lu 11P~*, 

(0uE1P I 0.,z11P')= Z* E'*(1P I ou-1.11P'), 

and of course 

(22a) 

where Z and E' are arbitrary complex numbers. It al
so follows from the properties of antilinear operators 
that 

(22b) 

Thus we see that only in the case of type (b) corepre
sentation the bases are not orthogonal. In case (b) if 
we try to orthogonalize the bases by Schmidt procedure 
the matrices cease to be unitary, This difficulty re
mains. In most of the problems it is more convenient 
to work with unitary matrices and hence we give up 
working with an orthogonal base. 

4. CLEBSCH-GORDAN COEFFICIENTS 

The Kronecker inner direct product of two corepre
sentations D" and DV is in general reducible and hence 
is a direct sum of irreducible components DA: 

D"0 v=D"0 U=~Gl atVDA • (23) 
A 

The frequency of D). in D,,0v, dr v is determined by the 
linear part G of the full gr oup M and is given by 
Karavaev13 

(24) 

Bradley and Davies14 have investigated the connection 
between the numbers dr v and the corresponding num
bers C~v for the irreducible representations 1::." 's of 
G 

(25) 

The Clebsch-Gordan coefficients are required when 
we are interested in the basis of different corepresen
tations D). formed from the product space of the bases 
of D" and DV. Since drv may be greater than 1, we 
introduce the index T). for a particular repetition of D).. 
The lth basis of the T).th repetition of D). in D"0 v is 
given in terms of the product bases I Ilm;vn) of D"0 v in 
terms of the Clebsch-Gordan coefficient 
(Ilm;lIn I T).N): 

hN)= ~(J.lm;lInIT).N)lllm;vn). (26) 
m.n 

Operating by 0u and 0a on both Sides, summing over 
all U E G and a EM - G, remembering the antilinearity 
of 0o's and the orthogonality relations (8) and (9), we 
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obtain a set of homogeneous linear equations in the 
Clebsch-Gordan coefficients 

L) (Ilm;vn I TxN)L)DIL (u)lmD"(u),,,D),(u):,. 
m.n u 

+ (Ilm;vn 191.s) * L)DIL (a)l~v (a),,p\a):,d 
• 

(27) 

The orthogonality of the Clebsch-Gordan coefficients 
will be 

L (Ilm';vn'l T~' X'l')*(llm;vn I T),N)(llm' I Ilm)(vn' I vn) 
m,n 
m:n' 

(28) 

In Eq. (28) the expression (Ilm' I Ilm) and similar ones 
are Kronecker om' ,m if D" is of type (a) or type (c) but 
are not always om' ,m for type (b) [cf. Eqs. (18), (20), 
(21)]. Moreover for type (b) representation (Ilm' I Ilm) 
depends on the particular choice of the bases. This is 
very important for groups which are not Simply reduc
ible. These factors may be different for different repe
tition of particular irreducible component, thus intro
ducing a lack of essential uniqueness in the Clebsch
Gordan coefficients for this type of groups. Solving 
Eqs. (27) and (28), we shall get all the Clebsch-Gordan 
coefficients. We work this out for the magnetic group 

It has14 three irreducible corepresentations, two of 
them D1 and D2 being one-dimensional and the remain
ing one, D3

, being two-dimensional. D3 is of type (c). 
Table V of Bradley and Devies14 shows that the nontri
vial case is the Kronecker inner direct product D'Si9 3 

= 2DI ffi 2D2. We have here 8 unknown C-G coefficients 
(D! ;D~ I T),D~) where m and n can take the values 1 and 
2. 

Solutions of Eqs. (27) and (28) give the nonvanishing 
Clebsch-Gordan efficients 

(D~;DWDb = Ji exp[ - ia], (D~;D~11DD = ~ eX!iia], 

(Dr;D~ 11D~) = ~ exp[- i/3], (D~;DWD~)= - h 
x exp[i/3], 

( 3.31 21) i [.] (D3 'D3 12D1)- i [.] D1;D1 D1 ='fT2exp-za, 2' 2 1 -±T2expza, 

(Dr;D~ 12D~)= 'f -nexp[ - i/3], (D~;D~ 12D~ = 'f ~ exp[i/3], 

(29) 

where a and /3 are arbitrary real numbers. We have 
written here (D~;D~ITXD;) for (Ilm;vnITxN). 

5. REALITY OF COREPRESENTATIONS 

In this section we investigate the criterion when an 
irreducible corepresentation DIL* is equivalent to DIL in 
the sense of Eqs. (5), i. e., 

A simple calculation shows that CC+ satisfies all the 

J. Math. Phys., Vol. 15, No. 12, December 1974 

2034 

conditions of Schur's lemma for irreducible corepre
sentations, hence CC+=r·E, where r is a real num
ber. Thus C can be chosen as a unitary matrix. The 
procedure for linear groups is not applicable because 
of the restriction on N having at least one real eigen
value in proving the Schur's lemma for irreducible co
representations. Hence we investigate the critertion 
for the 3 types of corepresentations separately. The 
proof of the following result is straightforward but la
borious application of Schur's lemma and is omitted. 

(i) DIL is of type (a) or type (b) 

DIL *. £ .DIL <=> ,:l1L*.~.,:l" (30) 

Now, if,:l"*'~',:lU, wehave15 K=aK, witha=±1. 

Also, a necessary and sufficient condition for ,:l1L • ~.,:l1L 
is 

L)</f(u2
) = ale 1= a( IMI/2). 

u 

In both cases we can choose 

PK*=KP. 

For type (a) corepresentations 

C=K 

and for type (b) corepresentations 

C=(~ ~) 
so that for both the cases 

C=aC 

with 

a=±1. 

(ii) DIL is of type (c) 

DIL*'£.DIL <=> either ,:l1L* .~.,:l1L • 
or ,:lil*.~ .,:lIL. 

(31) 

(32) 

(33a) 

(33b) 

(33c) 

(34) 
K IL -If ,:l1L* .=.,:l , K= aK, with a=± 1 and the necessary 

and sufficient conditions are 

and 

L)</f(u)1j!'"(u) = o. (35) 
u 

In this case 

C=(~ ~) (36) 

with C= aC, where a=± 1. 

On the other hand, when,:lii * • ~ .,:l1L with KK+ = E, the 
necessary and sufficient conditions are 

L)1j!IL(U2) = L)1j!v.(u2) = 0 
u u 

and 

L)1j!IL(U)1j!~(U)= IMI/2. (37) 
u 
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In this case 

C=~ ~) (38) 

with C = aC, where a= + 1. For all the 3 types of ir
reducible corepresentations we find on direct 
calculations 

.0X" (u2) + a.0l Tr CD" (a)* 12= Q 1M I 
" a 

if D"* .~ ·D". (39) 
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Dynamics of a multilevel Wigner-Weisskopf atom 
E. B. Davies 
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We study the dynamics of an atom with a finite number of discrete energy levels weakly coupled to 
a continuum of energy levels, showing that any bound state undergoes a decay into the continuum 
which. in the limit as the coupling constant goes to zero, becomes rigorously exponential. 

1. INTRODUCTION 

We study a Hamiltonian HA on C'El'lL2 (0,00) given by 

(1.1) 

where _fs12l _f 0 I a 01l 
Ho - [OTQJ' HI - ~ 0 ii I 0 j. (1. 2) 

In these equations S: C'- C· is defined by Ser=wrer 
where el , .•. , e. is the standard orthonormal basis of 
C' and wr > 0 are all different. The operator Q on 
L2(0, 00) is defined by 

(Qrp) (x) =xrp(x) (1. 3) 

and is an unbounded, positive, self-adjoint operator. 
All the coefficients of the vector a E C· are supposed to 
be nonzero. The function f E L 2 (0, 00) is supposed to 
satisfy some regularity conditions which are discussed 
in the appendix, and also the more physically signifi
cant conditions 

f(w r ) *0 for r = 1, ... , n. 

The orthogonal projection P is defined by 

P(uEf) rp) = u@O 

(1. 4) 

(1. 5) 

for u E C· and rp E L 2( 0, 00). The problem of the paper is 
to calculate the asymptotic form of the matrix 

(1. 6) 

in the limit X - O. For fixed t it is trivial that this limit 
exists and is equal to P e iHot P. To get a more inter
esting asymptotic expression we work in the interaction 
representation and write 

(1. 7) 

where T=X2t. Then TA(T): C'- C· is a linear contrac
tion and the limiting expression is 

T(T) = lim TA(T); 
A~O 

(1. 8) 

this limit being taken for constant T rather than constant 
t. We show that the limit exists uniformly with respect 
to T for 0 .;; T < 00 and obtain an explicit expression for it. 
Two qualitative features of the limit may be observed. 
The first is that T r is a semigroup: 

(1. 9) 

for all a, T ~ 0. This is closely related to the property 
of exponential decay which holds for the limiting system 
-note that strict exponential decay cannot hold before 
taking the weak coupling limit since, for finite X, HA 
is semibounded. 1 The second feature is that 

(1. 10) 
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for all T ~ O. As we have obtained the results both of 
these equations appear entirely COincidental, but we feel 
that there should be deeper reasons for expecting them 
to hOld, in this and possibly more general systems. 

In the case n = 1 the form of the limit T T is well-known 
in the physical literature. 2-4 The point of this work is to 
investigate what types of estimate are necessary for a 
rigorous proof of the exponential decay law. For n> 1 
we also show that the different eigenstates of Ho decay 
independently in the weak coupling limit, although the 
interaction term HI involves only one particular linear 
combination a of the bound states. 

We make some final comments about the assumptions 
on the model. The continuum is represented by the 
operator Q, but this may be replaced by any operator 
with absolutely continuous spectrum. There is no need 
to assume that the spectrum of S is multipliCity free. 
For if S has eigenvalues WI' ••• , w. with corresponding 
spectral projections PI' ... , p. and acts on the finite 
dimensional space V, we may define 

(1. 11) 

to obtain an orthonormal set such that Ser = wrer and 
a = L: (a, er)er . If W is the subspace spanned by el' ... , 
e. then the methods of the paper apply to HA restricted 
to WEFl L2(0, 00), while HA=S on Vn Wi. 

2. ESTIMATES OF THE DECAY RATE FOR 
VERY LARGE TIMES 

The method we use is an extension and generalization 
of that in Ref. 5, where the problem was solved for the 
case where Ho has only one discrete energy level. 

Lemma 2. 1: If X is sufficiently small but not zero then 
HA has no pure point spectrum. 

Proof: Suppose 

[ S I Xalld ] [~J - [~J 
A/0ii I Q I/! - a I/! ' 

or 

Su + Xa(I/!,/> = au, 

X(u, a)f+ QI/!= aI/!, 

(2.1) 

(2.2) 

(2.3) 

where either u or I/! is nonzero. If I/! = 0 then Su = au, so 
a = wr for some rand u = {3er ; also (u, a) = ° which con
tradicts our assumption that all the coefficients of a are 
nonzero. On the other hand, if (u, a) = 0 then QI/! = al/! 
and since Q has no point spectrum I/! = 0; the contradic
tion implies that (u, a) *0. Since 

(a-Q)I/!=X(u,a)f (2.4) 

a condition for solubility of the equations is that 

Copyright © 1974 American Institute of Physics 2036 
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(2.5) 

Sincejis continuous this impliesj(a)=O. Substituting 
this value of IjJ into Eq. (2.2) yields 

Su + ~.2a(u, a) « a - Qr1j,/) := au (2. 6) 

which can only have a nontrivial solution if 

(2.7) 

Since « a - Q )-1 j,j) is a bounded function of a the only 
solutions of this for small A are near one of WI' ... , wn• 

By condition (1. 4) it is therefore impossible to satisfy 
the conditionj(a)=0 as well as Eq. (2.7) for small -
enough A. 

Lemma 2.2: For all 1m z>O arniu,vEC" 

where PI' Pz , Pa are polynomials and 

h(z) = (R(z, Q)j ,/). 

(2.8) 

(2.9) 

Proof: We use the well-known perturbation series for 
the resolvent. 6 If 

K=Ho+A a®1 
then 

R(z,K)=R(z,Ho) + AR(z,Ho) a ®IR(z,K) 

=R(z,Ho) +AR(z,Ho) a ®t R(z,Ho) 

+ A2R(z, Ho) a ®JR(z, Ho) a ®I R(z, K) 

(2.10) 

=R(z,Ho) + AR(z,Ho) a ®! R(z,Ho)' (2.11) 

Since 

(R(z, Ho)a,j) = O. (2. 12) 

In matrix notation 

2037 

X{l- A2(R(z, Q)f,j) (R(z, S)a, a)}-l 

:= P1(z)+A2h(z)P2(z) , 

fr (z - Wr) - A2 h{z)Ps(z) 
rsl 

where 

h(z) = (R(z, Q)j,f), (2. 15) 

Pl(z) = ft (z - Wr)' (R(Z, S)u, v), 
r=1 

(2.16) 

is a polynomial of order (n - 1); 

P2(z) = :fi (z-wr)[(R(z,S)a,v)(R(z,S)u,a) 
r=l 

- (R(z, S)a, a) (R(z, S)u, v)] 

= ft (z - wrH t (z - ( 3)-1 (z - WI)"1 {asvsutllt - asllsulvt}l 
r=l s, t=I 

= ft (z-wr). [6(z-ws)-1(z-Wtrl{asvsUtllt-asllsUtVt}] 
r=l s~t 

(2. 17) 

is a polynomial of order (n - 2); and 

(2. 18) 

is a polynomial of order (n-1) with real coefficients 
such that for r= 1, ... , n 

P3(wr )= n (wr-wsHasI2;z!0. (2.19) 
{s:s~rl 

Theorem 2.3. There are constants A, AO> 0 such that 
if I A I ~ AO and t ~ 0 then 

IIPexp(iHAt)PII ~min{1,AIA2t}. (2.20) 

Prooj. We note that for 1m z > 0 

foe (exp( - iH\t) ea , ell) exp(izt) dt 

= i(R(z, H~)e", e,) = if/J(z), say. (2.21) 

Now f/J, which we have already computed, has boundary 
R(Z,K)=[R(Z, S) I AR(z,S) a ®] R(z, Q)l 

o R(z,Q) l (2. 13) values as 1m z - 0, so 

so 

R(z,H~) =R(z,K) + AR(z,K)j ® a R(z,H») 

=R(z,K) + [1- A(R(z,K)j, a) J-l 
XAR(z,K)j ® aR(z,K) 

by repeated resubstitution and taking the limit. If 
U, VE Cn then 

(R(z, H>.)u, v) = (R(z, K)u, v) + 

A[1- A(R(z,K)f, a) ]-1 (R(z, K)u, a) (R(z,K)f, v) 

= (R(z, S)u, v) + 
A 2[1 - A2(R(z, Q)f,/) (R(z, S)a, a) ]-1 

x (R(z, S)u, a) (R(z, Q)f, f) (R(z, S)a, v) 

= {(R(z, S)u, v) + A2(R(z, Q)j,/) 

(2. 14) 

x [(R(z, S)a, v) (R(z, S)u, a) - (R(z, S)a, a) (R(z, S)u, v)]} 
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r (exp( - iH~t) e", eB) exp(ixt)dt= if/J(x + iO), (2.22) 
o 

where both sides are interpreted as tempered distribu
tions. 7 Therefore 

(exp(- iH~t)e", eB) = -2
i 

j"f/J(X + iO) exp( - ixt) dX, 
'IT _c 

= 2~tlcqt(x+io)exp(-ixt)dx, (2.23) 

so 

By Lemma 2.2 

cp(x + iO) = q(x)N(x), 

where 

q(x) = Pl(X} + A2h(x + iO)P2(x) 

satisfies inequalities of the form 

Iq(x) I ~Al(1+ Ix!)""!, 

Iq'(x)1 ~A2(1+ Ixl)n-a, 

I f/J'(x+ iO)ldx. (2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 
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and 

satisfies inequalities of the form 

Il/J(x) I ,,;A3(1+ Ixl)n, 

I l/J'(x) I ,,;Ai1+ Ixl)n-1. 

Therefore 

I cp' (x + iO) I = Il/J(x)q' (x) - 1/J' (x)q(x) I / Il/J(x) 12 

,,;A
5
(1+ Ixl)2n-2/11/J(x)1 2. 

(2.29) 

(2. 30) 

(2. 31) 

(2.32) 

To estimate this further we need a lower bound on Il/J I . 
We choose a constant C> wr for all r= 1, ... ,n and 
extimate l/J separately in the three regions: 

n1 ={x:x?- c}, (2.33) 

n 2={x: Ix- wrl ,,;BX2, for some r= 1, ... ,n}, (2.34) 

n3 ={x:0,,;x,,;c, but Ix-wrl ?-BX2, for all r},(2.35) 

where B is a constant to be determined. 

In n1 , 

fr (x - wr ) 
r=l 

does not vanish; since it increases at infinity faster than 
h(X)P3(X) there is a constant A6 with 0 < Ae < 1 and 

Il/J(x) I ?-Ai1+ Ixl)n. (2.36) 

In n 2 we let 

A7=tmin{IP3(wr) I :r=1, .•. ,n} (2.37) 

which is nonzero by Eq. (2.19). If X is small enough 
then for I x - wr I ,,; BX 2 

IP3(x) I ?-A7 

and so 

I l/J(x) I ?- 11m 1/J(x) I =X 2 IImh(x+iO)IIP3(x)l, 

?- X2A71Im h(x + iO) I, 

=X27TA7Ij(x)1 2, 

(2.38) 

(2.39) 

by Eq. (A12). By Eq. (1. 4) and the continuity of j, if X 
is small enough 

11/J(x) I ?- X2A s' 

where As>O. 

In n3 we use the fact that 

TI(x-w r ) 
r=l 

is continuously differentiable with simple zeros at 
W1, ... , wn alone, to find a constant B1 such that 

(2.40) 

I IT (x-w r ) I ?-B1min{lx-wr l :r=1, ... ,n}. (2.41) 
r=l 

We also let 

Then if Ix-wrl ?-BX2 forallr=1, ... ,n 

Il/J(x) I ?-B1min Ix-wrl-X2B2' 
r 

?- (B1 - B2B-1) minlx- wrl, 
r 

=tB1minlx-w r l, 
r 
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if we define B = 2B2B;1. 

Returning to Eq. (2.24), we now obtain 

(2.44) 

provided X is small enough. 

Before going on to the next section we comment that 
this calculation gives the initial reason for believing 
that the rescaled time T=X 2 t should be relevant for the 
description of the decay of the system. 

3. THE EXACT WEAK COUPLING LIMIT 

Throughout this section we let T = X 2 t and take X, T to 
be the independent variables. We study the asymptotic 
form as X - 0 of 

(3. 1) 

The method is to expand exp(iH~t) as a perturbation 
series in X, which is known to converge for all t and X 
since H1 is a bounded perturbation. e The series is 

exp(iH~t) = exp(iHot) + iX t exp[iHo(t - t1)]H1 exp( iHot1)dt1 
t1=0 

dt2dt1 + ... 

so if U, VE en 
(3.2) 

t 
(T ~(T)U, v) = (u, v) + iX 1. (exp( - iHot1)H 1 exp(iHot1)U' v)dt1 t1 =0 

+ (ix)2 t J t1 (exp(- iHot1)H1 exp[iHo(t1 - t2)]H1 exp(iHot2) 
t1 =0 t2=O 

(3.3) 

Since H1 interchanges the spaces en and L2(0, 00), the 
even terms of this series vanish and we get 

(T~(T)UV) =(u, v) 

+ (iX)2 t t1 (exp( - iStJa, v) (exp[iQ(t1 - t2)]j,j) 
t1 =0 t2=0 

(exp(iSt2)u, a)dt2dt1 

+ (iX)4 { t1 {2 t~ (exp(-iSt1)a,v)(iQ(t1-t2)j,f). 
t1=0 t2=0 t3=0 t4-0 

(exp[iS(t2 - t3)] a, a) (exp[iQ(t3 - t4) ]j,f) (exp(iSt4)u, a) 

dt4 . .. dt1 + ... 

(3.4) 
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where 

I"(A, T) = (iA)2" J. ql(tJg{tl - t2)q2(t2 - t3)g{t3 - t4 )· •• 
11." 

q2(t2"-2 - t2"_1)g{t2"_1 - t2")q3(t2")dt2"· .. dtl' (3.5) 

and 

and 

g{s) = (exp(iQs)f.f), 

ql (x) = (exp( - iSx)a, v), 

q2(X) = (exp(iSx)a, a), 

q3(X) = (exp(iSx)u, a), 

A" = {(tl ... t2") : ° .;; t2".;; t2"_1 .;; ... .;; tl .;; f}. 

Writing 

so that 

A"={(sl"" ,s",xl"" ,x") :ST;;'O, xT;;.O, 

" hi(ST+ Xr)=t1 .;;t} 

we obtain 
n n-l 

I"(A, T) = (iXr" 1" ql {~(ST + Xr)}q3(X") HI Q2(XT) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

whereK"(x,y)=O unless x,y;;'O, and if this is the case 

K"(x,y) 
" = (iX)2" .{" Ql{Y + ~xr} Q2(Xl ) . .. Q2(X"_1)Q3(X")dxl . . dx", 

(3.15) 
where 

(3.16) 

Further progress depends on estimates of the kernel K. 

Lemma 3.1. If one of Ill> ••• , II" is non-zero then there 
is a constant A such that for all x;;. ° 

J x = I t exp[i~lI,xr]dXl'" dx"1 .;;Ax"-l. (3.17) 

Proof: By permuting indices we may suppose that 
11",*0. Writing 

T " 
6X·=Y, II = '>' JJ. .. 
i=l I r T t# • (3.18) 

so that 

i>,xr= 'EJJ.rYr , 
7=1 r=1 

(3.19) 

J x = It r r ex.Ji 'EJJ.rY)dY" ... dYl 
:y 1 =0 Y2=Yl lIn= )/"",1 J:'\l r=1 r) 

= I f_ r _ expti ~ JJ.rYr)(iIl")-l {exp(ill"x) 
::Vl -0 :Yn-1- :Y n-2 r 7=1 

- exp(ill"y"_I)} dY"_l ... dYll .;; 2111" 1-1 x"-I/(n - I)!. (3.20) 

For the remainder of the calculations we let u and v 
be, respectively, the elements e, and e. of the standard 
orthonormal basis of C". Since C" is finite dimensional 
and T~(T) is linear the general case can be immediately 
obtained from the special one. 
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Lemma 3.2: There are constants A" such that for all 

x;;. ° andy;;.O 

IK,(x, y) - (iA)2"o,. I a. 12" exp( - iWqY)x"/n! I';;A"A 2"X"-1. 

(3.21) 

Proof: We note that 

ql(X) = exp(- iw.x) a., (3.22) 

" q2(X) = 6 exp( iw,x I aT 12, (3.23) 
T-l 

q3(X) = exp( iw,x) 71" (3.24) 

so 

K"(x, y) = (iX)2"a.(lp exp( - iwqY) fa ("it exp( - iW.,X)Q2(Xr)} 
n 7=1 

exp[i(wp-w.)x" 

(3.25) 

and 

exp(-iw.r)Q2(x)= la.1 2 + L: laTI
2exp[i(wr -w.)x]. 

T~. 

(3.26) 

Expanding the integrand as a sum of exponentials the 
main contribution comes from the constant term, which 
is 0 p.1 a. 12"-2, while the other integrals can be bounded 
as required by Lemma 3. 1. 

We now define 

I"(T) = [(- T)"/n!] oP. a:, 

where 

a.= la. 12 l OO

g{s)exp(-iw.S)dS 

and 

Rea.=7Tla.1 2 If(w.)1 2 >0, 

by the Appendix and Eq. (1.4). 

Lemma 3.3: limI"(X, T)=I (T) 
~-o " 

uniformly for 0.;; T .;; To' 

Proof: We first observe that for aU x, Y 

IK"(x,y)1 ';;X2"x" IIQlllooIlQ211:11IQ311,Jn! 

so 

(3.27) 

(3. 28) 

(3.29) 

(3.30) 

(3.31) 

Given E> ° there exists Ii > ° such that if n .;; T .;; Ii then 

II"(X,T)I<E/2,II"(T)I<E/2, 

so 

II"(X,T)-I"(T)I <E. 

We now estimate the difference for Ii .;; T';; To' 

i"(X, T) -I"(r)=Rl +R2 +R3, 

where 

Xg(s")ds l .•• ds", 

(3.32) 

(3.33) 

(3.34) 

(3.35) 



                                                                                                                                    

2040 E. B. Davies: Dynamics of a multilevel Wignar-Weisskopf atom 

- ~ (iX)2n Opq I aq 1
2n exp( - iw q~Sr) (t - ~Sr)n]g(S1) . .. g(sn) n. 

xds1 •.• dsn, (3.36) 

R =J (iX)2n o la 12n exp(-iw ~s) 
3 "r~o,r:.sTCt Po q q r 

x [(t - ~Sr)n - tn]g(sJ . .. g(sn)ds1 • •. dsn• 

We estimate these terms separately. 

(3.37) 

IR11 ~.-!., T~Op la 12nl 21g(s1) •.. g(sn)lds1 ... dsn n. q q "rillO,Z;"r;.eA-

< e/4 (3.38) 

if X is small enough. By Lemma 3.2 

'" A"x2Tn-1 1 Ig() g() I d d 
'< 0 0r-o,tor"t S1... Sn S1 ... S1' 

~Anx2T~-1I1gll~, 

< e/4, (3.39) 

if X is small enough. 

To estimate Rs we let a be a constant large enough so 
that 

1 " 1.., Tgop.laql2n Ig(S1) .. . g(sn)lds1 •. . dSn<E/4. 
,srillO,LI"r illo n. 

I R 1< f 1.. X 2n 0 I a 12n[tn - (t - ~s )nJ 
3 , n' pq q r 

"rillO, t=-!:"'riliO • 

x I g(S1) ..• g(sn)fds1 ... dS n 

x Ig(S1) .. . g(Sn) Ids1 ... dsn, 

.,;e/4+ n~ T~opqlaqI2nllgIIN1-(1-X2ao-1)nJ, 

<E/2, 

(3.40) 

(3.41) 

if X is sufficiently small. Putting these estimates 
together proves that if 0 .,; T .,; TO and X is small enough 
then 

IIn(X, T) -In(T) 1< E (3.42) 

which, with Eq. (3.33), proves the lemma. 

After these preliminaries we are now able to prove 
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the main theorem of the paper. 

Theorem 3.4: 

lim(T).(T)ep,eq)=op exp(-Il T) (3.43) 
).-0 •• 

uniformly for 0.,; T< "", where Il. is given by Eq. (3.28). 

Proof: Given e> 0 we can by Theorem 2. 3 choose To 
large enough so that if T '" To and I X I .,; Xo then 

lexp(-llqT)1 <e/2, I<TI.(T)ep,eq)1 <e/2. (3.44) 

Therefore 

I (T).(T)ep. eq) - opqexp(- IlqT) 1< e. (3.45) 

For 0 .,; T ~ To we use the expansion 
~ 

(T).(T)ep, e) = '£I"(X, T). 
"=0 

(3.46) 

Each term of the series is uniformly convergent by 
Lemma 3.3 and the series is bounded by 

.. ~ 

'£ II"(X, T) I .,; '£T~llq111 ~ Ilq211~-11Iq3IUgll~/n! 
n=O n=O 

< 00. (3.47) 

Therefore the series converges absolutely uniformly and 
the limit is 

~ ~ 

'£I"(T) = '£(- T)"op.Il:/n! 
n=O n=O 

= opqexp( - IlqT). (3.48) 

If 0 .,; T ~ To and X is small enough then 

(3.49) 

which, with Eq. (3.45), proves the theorem. 

The limiting map TT: Cn - C" is given by 

n 

(T T u, v) = '£ exp( - Ilr T) u/iJr • 
T=l 

(3.50) 

The fact, stated in the introduction, that T T is a semi
group which commutes with R o' is immediately apparent 
from the solution. 

APPENDIX 

The function f E L2(0, 00) is supposed to satisfy some 
regularity conditions. It is certainly sufficient that f be 
a C~ function of compact support, but in fact we need 
very much less. Let 

g(s) = (exp(iQs)f ,j) (A1) 

so that g is a bounded continuous function. We suppose 
that 

[(l+S)Ig(S)lds<oo (A2) 
o 

so that gE L1( R) and If 12 is a continuous bounded func
tion with 

I f(x)i2 = 21 fOe g(s) exp( - isx)ds 
7T _~ 

for all - 00 < x < 00. Now for all Re z > 0 

f exp( - iQs) exp(izs) ds = iR(z, Q) 
o 

so if 

h(z) = (R(z, Q)f, f) 

(A3) 

(A4) 

(A5) 
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then 

h(z) = i [ g{- s) exp(isz) ds. 
o 

(A6) 

This function is analytic and bounded in the upper half
plane and can be continuously extended to the real axis 
with 

h(x+iO)=i[g{-s)exp(isx)ds. (A7) 
o 

Similarly for Re z < 0 

r exp(iQs) exp( - izs) ds = - iR(z, Q) 
o 

so 

h(z) = - i fa" g{s) exp( - iSz) ds 

and 

h(x-iO)=- r g{s) exp(-isx) ds. 
o 

Since g{ - s) = g(s) for all s it follows that 

h(x - iO) = h(x + iO). 

Also 

1m h(x + iO) = (l/2i) [h(x + iO) - h(x - iO)], 

= t 1: g{s) exp(- isx) ds, 
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(Al2) 

The general behavior of h is that it is bounded and 
analytic in the entire complex plane with a cut along that 
part of the real axis where fix) *" O. Finally 

h' (x + iO) = i :x J" g{ - s) exp(isx) ds 

= - r sg(- s) exp(isx) ds, 
o 

(Al3) 

which is continuous and bounded by our hypothesis on g, 
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Clebsch-Gordan coefficients and special functions related 
to the Euclidean group in three-space* 
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In this paper the Clebsch-Gordan coefficients of the Euclidean group in 3-space are explicitly and 
rigorously determined, The results are used to give elegant derivations of identities involving Wigner 
D functions and spinor functions. 

1. INTRODUCTION 

Several authorsl
- 3 studied special functions associated 

with the representation theory of the Euclidean group 
in 3-space [E(3)]. In 1969'Holman4 obtained the Cleb
sch-Gordan (C-G) coefficients of E(3) from the study 
of the corresponding structure SO(4) by an Inonu-Wig
ner contraction. His work is, however, incomplete in 
that full mathematical justification still remains to be 
made regarding use of contractions for the derivation 
of C-G coefficients, and that the method of contraction, 
even if justified, yields no information on the coupling 
scheme of helicities in the final results. Furthermore, 
no author, to the best of our knowledge, has explicitly 
linked the C-G coefficients of E(3) with special func
tions. This paper fills these gaps. 

The twin purposes of the present work are to deter
mine the C-G coefficients in a direct and rigorous 
manner and to apply them to special functions related 
to E(3). The latter process not only leads to new gener
alized identities involving Wigner D functions and spin
or functions, but also unveils the hidden group-theoret
ic structure of known results. The identities of Jack
son and Maximon, 5 for instance, turn out to be express
ible as a product of two C-G coefficients of E(3). 

Our investigations are carried out within the frame
work of theory of induced representations. Section 2 
is devoted to an explicit construction of the unitary ir
reducible representations of the simply connected cov
ering group of the Euclidean group in 3-space [E(3)]. 
(In this paper this covering group is often named im
plicitly the Euclidean group in. 3-space.) The problem 
of decompOSing the tensor product representation as a 
direct integral is solved in Sec. 3 together with com
putation of C-G coefficients. In Sec. 4 we derive an 
addition-product theorem and integral formula for 
Wigner D functions. We also determine the matrix ele
ments of tensor product representations and an integral 
containing a product of three matrix elements. All 
these lead to various identities involving Wigner D func
tions and spinor functions in terms of the C-G coeffi
cients. Most of these results are new in such general,. 
ized forms. Wigner D functions comprise such special 
functions as Jacobi polynomials, ultraspherical poly
nomials, associated Legendre polynomials, and spher
ical harmonics, while spinor functions become gener
alized and ordinary spherical Bessel functions as 
special cases 0 

,......-

2. THE UIR OF E(3) 

A. The Euclidean group in 3-space 

In this paper we are concerned with the simply con-
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nected covering group E(3) of the proper Euclidean 
group in 3-space E(3). It is the semidirect product 
R3 x ~SU(2) relative to the homomorphism 11 of SU(2) into 
the group of automorphisms of W. The matrices 

±A EO SU(2) determine the same rotation 11(A) given by 

A(r· O')A-l = (17(A)r)· 0', (1) 

where 0' stands for the Pauli matrices 

O'l=(~ ~), a2=(~ -;). if=(~ _~). (2) 

We usually write Ar instead of 17(A)r. If 

with aa + bfj = 1, then 17(A) has the explicit expression6 

l:z2 _ b2 + (i2 _ fj2 i(a2 + 0 2 _ a2 _ b2) 
ao+ab 2 2 

('az + fj2 + a2 + b2) 

2 
17(A) = 

-tab + aD) i(-ab + aD) aa- bo 

---B. The construction of U I Rs of E(3) 
1\ 

The dual group R3 of W consists of the unitary char-
acters XP:a r elP-a for a EO R:i. We identify it with the 
momentum space p3. Then the group SU(2) acts on p3 
as well as on W. The SU(2) orbit of a given p EO p3 con
sists of all p', where liP' II = lip II and hence the SU(2) 
orbits in p3 are spheres n p, np={p EOp3: lip II =p;:' O}. 
Thus we can characterize the partition of p3 into orbits 
by choosing the following set K of representing the stan
dard momentum p: 

where 

K={p = (0,0, p): p~ O}o 

Hence there exist only two different stability groups 
(little groups), 

G g = SU(2) for p EO no, 
r-./ 

Gg= SO(2) for p EO np (p >0), 
r----' 

(4) 

(5) 

where SO(2) is the twofold covering group of SO(2), the 
group of rotations around the z axis, and it is isomor
phic to the multiplicative group of the complex num
bers eil/i /2, 0 ~ 1/J < 411. Thus its UIRs are one-dimension
al and of the form 

rs([~1/i/2 e~II/i/2]) = elSO, (6) 

where 2s = 0, ± 1, ± 2, .... 

Copyright © 1974 American Institute of Physics 2042 
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The UIRs associated with the trivial orbit 0 0 are those 
which act trivially on the translation subgroup and are 
uniquely determined by a UIR of SU(2). They are of 
little interest in the present work. The UIRs (p, s) as
sociated with an orbit Op(p > 0) are given by 

(7) 

where" denotes "induced. " 
. The carrier space of (p, s) is H(p, s), the Hilbert space 

of Lebesgue square integrable functions on the mani
fold Op with inner product 

(f,g) = In JrPJ.g(p)dw(p), f,gEH(p,8), (8) 
p 

where dw(p) == sinOdfJdcp for p = (p sinfJ cosq;, p sinO sincp, 
p cosO) E Op. We recall the set Kin (4) meets each or
~ust once and it is certainly a Borel set in p3. Thus 
E(3) is a regular7 semidirect prod~ Therefore, one 
can conclude that (i) every UIR of E(3) which acts non
trivially on the translation subgroup is unitarily equiva
lent to a representation of the form (7) for some choice 
of constants p, 8 and (ii) two such representations U1 
and Uz are unitarily equivalent if and only if PI = Pz and 
8 1 =Sz· 

In (7) we set 

Q(P, A) = (rS t SU(2»(p, A) 

which is called a multiplier and satisfies 

Q(P, Al)Q(Ailp, A 2) = Q(p, A IA 2)· 

Hence we can getS 

(9) 

(10) 

Q(p, A) = Q(P, A;':.;)"IQ(p, A;~pAAA-lp_;)Q(P, AA~lp_po), 
(11) 

where the rotation Ap_f' for instance, denotes 
TJ(A~-C)P =p and R(p,A) EA;:gAAA-lp_C is called the 
Wigner's rotation with a property 

TJ(A;:pAAA-lp_f)P = TJ(A;:p>A)Xlp = 7)(A;: i)P =p. (12) 

We can see that (11) implies8 the unitary equivalence 
between UIRs (p, s) corresponding to Q(P, A) and 
Q(p, R(p, A». Thus we often write Q(p, A) = Q(p, R(P,A». 
Making use of (3) and parametrizing SU(2) in Eulerian 
angles, we can compute Q(p, R(P, A». From (7) we can 
write 

[UP,S (a, A)f](P) = eIP'QQ(p, R(p, A»f(A -lp), (13) 

where if p == (p sinfJ coscp, P sinO sincp, p COSO) and A 
= <-\ ~, then 

Q(p, R(P, A» 

== (,1- 2bb) sinfJ - abe l "(l + cosO) + aoe4"(1- COSO»)S /z 
(1- 2bo) sinfJ + abe'''(I- cosO) - abe=lll'(1 + cosfJ) 

and if A -lp == (p sinO' coscp', p sinO' sincp', p cosB'), then 

cosB' = (1- 2bb)cosB + (abeill'+ abe-'''') sin B, 

l".==(aZsinB. e l
" - bZsinO· el

" _ 2abcosB)1/2 
e a2 sinO. ef " _ bZ sinB. e f " _ 2ab cosO . 

An orthonormal basis for H(p, s) is knowns as 

h~(O, cp) = (- l)m. (l2iTj"lD:.m(cosfJ)eim", 
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u=ls/, Is/+1,"', m=-u,-u+l,· ",u, 
(14) 

where the D;,m(cosO) are Wigner D functions [see (A1)]. -3. THE TENSOR PRODUCT OF TWO UIRs OF £(3) 

A. Clebsch-Gordan series of £(3) 
~ 

The tensor product (~Sl)09(P2, S2) of two UIRs of E(3) 
is defined as a representation, 

[([fl. 51 01?2h)(a, A)f] (PI' P2 ) E [Ul ,2(a, A}f](PI' P2) 

= exp[i(Pl + P2)' a]Q(Pl> A)Q(P2' A)f(A-IpI' A -lp2 ), 

(15) 

on the Hilbert space H l ,2=H(Pl, sl)0H(P2, S2) of Lebesque 
square integrable functions on Opt 0 OP2 with scalar 
product 

(f,g?'z== In ""'n dW(P1)dw(P2)f(Pl,P2)g(Pt,P2)' (16) 
PI.." P2 

To the representation U1
,2 accol"ding to (15) belongs 

the character x'(a) = e iP ' a = exp[i(Pl + P2») • a on the mo
mentum space p3 of E(3). In U1,z, therefore, occur only 
once those representations Up·s for which PI E OPl and 
P2 E "P2 exist with the total momentum 

(17) 

from Op where 0 ~ I Pl - Pzl < p < P1 + pz. 

We introduce a unit vector q perpendicular to p, 

q == [(p~ _ p; - p2)1 PI + (pZ + p~ - p~)Pz]j pv':\(p2, p~, p~) (18) 

where A(a, b, e) == 2(ab + be + ae) _ a2 - bZ _ eZ• 

Let M(p)=iqEPlqlp, IIqll ~1}. Because Cf=So(2) 
acts on M(P) transitively, M(P) can be characterized by 
a standard element, q",= (cosa, sina,O) such that M(P) 
= C p • q,.. Introducing a linear transformation that car
ries simultaneously p to P and q", to q, we can express 
q in terms of P and q",. IT P 
= (p sine coscp, p sinB sincp, p cosB), then 

q = (- cos a sincp - sin a coscp cos e, cos a coscp 

- sina sincp case, sina sine). (19) 

Thus we can pass from (Pl' P2) space to (p, q) space, 
i. e., from (B1' CPl' Oz, CPz) coordinates to (p, B, cp, a) co
ordinates. By a direct computation we obtain the 
Jacobian, 

(20) 

One can easily see that the tensor product 
(PI' 81) 0 (pz, S2) itself is induced by the stability group 
Ct. Hence it is sufficient to decompose 
(UP!·s10 UPz.82)(a, A) for A E Cp. We obtain 

[(UPl>SllZ UPz,S2)(a, A)f](P, q",) == t exp{i(sl + Sz 
n= .. oo 

where .B is due to the Fourier series expansion with 
respect to A-lq"" and we made use of 

where 
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(e._ /2 0) 
A= 0 e-U/2 E Ct, 0 ~?/!< 41T. 

Therefore, we showed symbolically 

Theorem 1: (P1' 51) ffi (P2' 52):::: JI~P.!;PI2 dp tffi (p, 51 + 52 + n) 
1 2 "..-_' 

The immediate consequences of Theorem 1 are con
tained in 

Corollary 1: 

(i) (Pl' 51)0(Pa, 52) ::::(Pl' 5a)0(Pa, 51), 

(if) (Pl' 51)0 (Pa, 5a) :::: (Pl' 53)0 (Pa, 54), 

if and only if 51 +5a=53 +5dmod 1). 
-.., 

B. The Clebsch-Gordan coefficients of E(3) 

(23) 

(24) 

(25) 

In the decomposition (23) the representations on each 
side act on functions of different variables and, hence, 
care is needed in handling the multipliers and basis. 
Choosing the standard multiplier Q( p, R( P, A» for (p,51 

+ 52 + n), we must take the "consistent" multipliers 
Q(P.(P, qa), R(P.(p, qa), A» rather than the standard 
multipliers for (PI> 5.), i = 1,2. Using the property of 
multipliers, we obtain9 the intertwining multiplication 
functions Q(p, R(P.(P, qa), A~~p», i = 1,2. Thus the ba
sis of (p, 51 + 5a +n) is 

USing orthonormality of basis and substituting multipli
ers and variables we can express the C-G coefficients 
in an integral form, 

(- l)"'l+"'a-'" Jb (2.J. . 
= 41? 0 Jo oexp[-t(51+5a +n)0!] 

xexp[i(m1 + m 2 - m)q;] D:1+&a+ n,,,, (cose) 

x(COSO sinXl + sine (sinO! COSXl - i cos 0!»)&1 la 
cosO sin Xl + sine (sinO! COSXl + i cosO!) 

x(COSXl sine + sinXl (cosO sinO! - i COSO!»)"'l/a 
COSXl sinO + sinXl (cosO sinO! + i cosO!) 

XD~l''''l (COSXl cosO - sinXl sine SinO!) 

(
COSO sinXa - sine (sinO! cosX! - i cos O!»)aa /a 

x cosO sinXa _ sine (SinO! COSXa + i cosO!) 

X (COSX2 sinO - sinXa (cosO sinO! - i cos O!») "'21 2 

cos X! Sine - sinXz (cos e sin O! + i cos O!) 

xD~''''a (COSXa cosO + sinXa sinB SinO!) 

x sinO dB dq; dO!. (30) 

Making use of (All) and (A3) and integrating with re"' 
spect to B, q;, and O! we obtain9 

E(p, u, ml + m a, 51 + 5a +n Ip1' Ul , m l , 51; Pa, Ua, ma, 5a) 

= i" s1-&a-n[2/(2u + 1)]1/aC(Ul, ml; Ua, malu, m l + ma) 
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1
+":!+n,,,,(cosO). e·"''', 

u=151,151+1,· •• , m=-u,-u+1, .•• ,u 
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(26) 

while the bases of (Pl' 51) and (Pa,5a) are, respectively, 

Q(P, R(Pl(P, q a), Ap: p» . h:Jl (01, q(1) 

= (- 1)"'1 . (COSO sinXl + sinO (sin O! COSXl - i cOSO!»)&l /a 

.f21(. cosO SinXl + sinO (sinO! COSXl + i cosO!) 

(27) 

and 

Q(P, R(Pa(P, qa), A;~;». h;2 (ea, q;a) 

= (-l)"'a .(COSOsinxa-SinO(SinO!coSXa-icoSO!»)Sa/a 
--:rr;=- cosO sinXa - sinO (sinO! COSXa + i cosO!) 

xD"2 (cosea). e·m2"2 
"2·m2 ' 

~ = 15. I, 15.1 + 1,''', m.=-u., -u. + 1 .. ·,up i=1,2, 

where 

sinx.=v'1/2P.p, i=1,2, 

COSXl = (pa + p~ - P~)/2P1P, cosx! = (p2 + p~ - p~)/2paP. 
(28) 

Eq~peed with these we can define the C-G coefficients 
of E(3), 

(29) 

Ul 

X ~ (-1)~C(Ul,k;ua,-k-51-5a-nlu,-51-5a-n) 
~=-ul 

(31) 

where C(.; ·1·) are the C-G coefficients of SU(2). 

It is similar to the result obtained by Holman4 in that 
two C-G coefficients of SU(2) and two Wigner D func
tions are present in each expression of the C-G coeffi
cient. Holman derived it indirectly by an Inonu-Wigner 
contraction from the study of SO(4). His work is, how
ever, incomplete in that full mathematical justification 
still remains to be made regarding use of contractions 
for the derivation of C-G coefficients, and his result 
has no information on the coupling scheme of helicities. 
The present work is explicit and complete using direct 
and rigorous method. 

In (31) we normalized the E(·I· ; .) such that the fol
lowing orthonormal relations hold: 

E(jJ, u, mi +m~, 5i +5~ +nlpl, u;" mi, 5i;Pa,u~, mi, 5~) 

XE(p, u, m l + m a, 51 + 52 + n I Pl' Ul' ml' 51; Pa, Ua, ma, 5a) 

(32) 
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4. The C-G COEFFICIENTS OF E(3) AND 
SPECIAL FUNCTIONS 

A. C-G coefficients and Wigner D-functions 

From (29) we can derive the addition-product theorem 
fE)r Wigner D functions 

D~l m (cOS)(1 cosO - sinX1 sinO sin a) D; "'g (COS)(g cosO l' 1 Z, 

+ sin)(g sinO sin a) 

"1+"2 

= E B 
11= 1111-"2 1 n=- ~ 

XE(p, u, ml +mg, 81 +SZ +nlpl' Ul> m l , Sl;PZ, Uz, mZ, S2) 

(
SinXl cosO + (sina COSXl + i COS a) SinO)51/Z 

X sinXl cosO + (sin a COS)(l - i cosa) sinO 

x (SinXz cosO - (sinacos)(z + i cos a) sinO)3Z/Z 
sin)(z cosO - (sin a cosXz - i cosa) sinO 

x (COS Xl sinO + (sin a cos 0 + i cos a) Sin)(1)",1 / Z 

COS)(l sinO + (sina cosO - i cos a) SinX1 

(
cos)(z sin II - (sinO! cosll + i cosO!) Sinxz)"2/a 

x cosXa sinO _ (sin a cosB - i cosa) sinXa 

XD~1+5Z+"''''1+"'2 (cos B) exp[i(sl +sa +n)a] (33) 

Expressing (29) in the other set of variables we are 
given a product theorem for Wigner D functions. We can 
also get an integral formula for Wigner D functions 
from (30). 

B. The C-G coefficients and matrix elements of (p, s) 

In the following we write the operator U instead of 

The matrix elements of (UP1,SI @UPa,SZ)(r,A) give rise 
to the product theorem: 

{vl , nll P1, s11 ul, ml}( r, A){vz, nzl Pz, Sal uz, mJ( r, A) 

1 "1+lI
z Vl+"2 .. iPl+PZ 

=- E ~ E pdp 
P1PZ 1I=11I1-lIal v=lvl -vz l n=-" I PI-Pzl 

xE(p, v, n1 +ng, Sl +sz +nlp1' vi> nl' Sl;PZ, v2, m 2, S2) 

The above, among others, reduces to a product theorem 
for generalized and ordinary spherical Bessel functions, 
respectively. 

We now turn to an integral containing a triple product 
of matrix elements. Making use of (37) and (38) we ob
tain, for 1 Pl - pz 1 < P3 < P1 + Pz, 
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cp.3, and we consider the matrix element with respect 
to the orthonormal basis {h:'(B, q1)} given in (14). If 
A E SU(2) has Eulerian coordinates (q1, a, q1'1)' we knowS 

(h:;' U(O, A)h:'> == T"nm(A)li ll • v (34) 

where 

T'nm(A) == (- i)"-"'exp[i(nq11 + mq12)][2/(2u + 1)]1/2D~n. ",(cosa) 

and 

(h~.u(r, I)h~) == [v, nip, S Iu, m](r) 

_ fu ~ [(2U + 1)(21 + 1)]1/Z._ I. ( ) 

___ ..,,-__ - 71' 1= III-vi (2v + 1) t J z pr 

x Y;'""(O,., q1y)C(l, 0; u, S I v, s)C(l, n - m;u, m I v, n), (35) 

where C(. ;' I·) are the C-G coefficients of SU(2) and 
the jz(pr) are spherical Bessel functions. The 
[v, nip, s 1 u, m]( r) for fixed v are called spinor functions. 
The functionsj;:~(pr) =i"-V[v,nlp, 8 lu, n]«O, 0, r» are 

called generalized spherical Bessel functions. 3 In parti
cular, j~:g(pr) ==j,(pr). 

By the group property U( r, A) == U( r, I)U(O, A) 
==U(O,A)U(A-lr,I), we obtain the matrix elements of 
E(3), 

{v, nip, s I u, m}( r, A) =(h~,u( r, A)h::'> 

= t [v, nip, 8 lu, m'](r). ~.,,,,(A) 
m'=-. 

= t r:;,n.(A). [v, n' Ip, s I u, m](A-1 r). 
ri ... u 

The matrix elements {v, nip, s 1 u, m}( r, A) satisfy the 
orthogonality relations, a 

4nZ 
= P1P2P3 E(ps, Is, ~, Ss I P1' 11, m1, Sl; Pz, la, mz, sa) 

XE(P3' I~, m~, sslpl' 1{, m~, Sl;PZ, 1~, m~, S2) 

x 0ms'",1+mao"'s''''i+'''z0'':!,51+3Z+n 

for some integer n. 

(36) 

(39) 

Setting 1; == 0, i = 1, 2, 3 and using (35), (36), and (A4), 
we get 

x sinll,.dOy dq1r 

471'2 = -- E(P3' 0, 0, Olp1, 0, 0, 0;P2, 0, 0, 0) 
P1P2P3 

where ll' 12, 13 are nonnegative integers. 

(40) 

USing (31), (A5) and the known integral in terms of 3-j 
coeffiCients, 10 

g' J;; Y~(II, cp)Y':'j(O, q1)Y';i(B, q1) sinB dO dcp 
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FIG. 1. Angles Xi and X2' 

we can easily obtain 

(~j, (P1r)j, (P2r)j, (P3r)r2dr= _7f_i'l+12-I:![(2l1 
)0 1 2 3 PIP2PS 

+ 1)(2l2 + 1)(2l3 + 1) 1-1/2 

(
ll 12 l3\"zE(ps, 0, 0, 0 I Pl' 0, 0, 0; P2' 0, 0, 0) 

x 0 0 oj 

XE(P3' 13, 0, Olpl,ll' 0, 0;P2l2, 0, 0) 

= ~-- i' 1 +1 2 -
'

3 1 2 S 7f (l 1 1 )-1 
4P1P2PS 0 0 0 

(41) 

mln(11,/) (l 1 l)(l -m)'(l +m)I)1/2 x ~ (_ 1) '" 1 2 3 1 . 2 • 
m=-mn(ll,lz) m - mO (l1 +m) l(lz - m) 1 

XP~l (cosxJPi; (cosXz), (42) 

where the PT are associated Legendre polynomials. 
Thus we need the restriction that II + l3 + ls is even to
gether with III -l21 $; ls $; II + l2 for (42) not to vanish 
from the properties of the C-G coefficients of SU(2). 
The above (42) agrees with the known results5 ,l1 up to 
an arbitrariness of multiplicative factor of unit modu
lus, which is applicable to E(· I· ; .). 

APPENDIX A: WIGNER D-FUNCTIONS 

We define Wigner D functions as 

u )_(2u+1)(U+S)!(u+m)!)1/2 
Ds,m (cosO - 2(u _ s)! (u _ m)! 

(sinO)"'+.(1 + cosO)U-S- m 

X 2"r(m + s + 1) 

( 
COSO-1) 

x 2F 1 -u+s,m-u;m+s+1; cosO+1' 

s, m = - u, - u + 1, ... , u, 

where the 2F1 denote hypergoemetric functions. The 
followinl?" orthogonality relations hold: 

(A1) 

(D~.," (cosO)D~.",(cosO) sinOdO= cu,v' (A2) 

The Wigner D functions satisfy the relations 

u u' u+u' (2U + 1)(2u' + 1»)1/2 
Dn,m (cosO)Dn, ,m' (cosO) = ~ 2(2l + 1) 

1= Iu-u' I 

xC(u,-n;u',-n'll,-n-n') 

XC(u, m; u', m'll, m +m')D~".,m+m' (cosO) (A3) 

and 
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J. ' DU '" (cosO)Du
n: m' (cosO)D!+n' m+"" (cosO) sinO dO o n. t • 

_(2U+1)(2U
I 

+1»)1/2C ( _ . I _ 'll __ ') 
- 2(2l + 1) u, n, u, n , n n 

XC(u, m;u',m' Il, m +m'). 

The Wigner D functions are related to associated 
Legendre polynomials as 

D' (z) = D' (z) = (2l + 1)1/2 (l- m) !)1 I~T(z). 
m,O O,m 2 (l +m)! 

APPENDIX B: ADDITION THEOREM FOR 
WIGNER D FUNCTIONS 
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(A4) 

(A5) 

We shall derive the addition theorem for Wigner D 
functions indispensable to computation of the C-G 
coefficients of E(3). From (13) we can write, restricting 
rP',S(r, A) on SU(2), 

[U(A)fl (cosO, e/~) 

= (1- 2bb) SinO - abel~(1 + cosO) + ~~e-I~(1_ COSO»)" 12 
(1- 2bb) sinO + abe h (1 - cosO) - abe-""(1 + cosO) 

Xf[(1- 2bb) cosO + (abe h + iibe-I~) sinO, 

(
a2el ~ - 1j2e-h) sinB - 2ab COSO)] 
(}e-j~ - b2ej~) sinO - 2Zib cosB ' 

A=( ~ ~) ESU(2). 
-b a 

As is well known, 2,9,12 the U(A) in (B1) is unitarily 
equivalent to D(u), a UIR of SU(2) where U'" I s I and 

(B1) 

2u is a nonnegative integer. As in (14), we can choose 
the basis vectors6 

hm (cosO, el~) = (- 1)"'(.f27f)"lD:,m (cosO) • elm'll (B2) 

and the matrix elements of D(u) with respect to these 
basis vectors are, from (34) 

for 

A=( cos(a/2) Sin(a//2») l,k=0,1, .•• ,2u. 
-sin(a/2) cos(a 2)' 

Consequently, we write 
2u 

(B3) 

[U(A)h_u.kl (cosO, e l
"') = ~ T't_u,k-u(A)h_u+1 (cosO, ei

"'). (B4) 
1=0 

Substituting (B1), (B2), and (B3) into (B4) we obtain the 
addition theorem for Wigner D functions, 

(
cosasino- sina (cosO cosrp +isinrp»)S/2 
cosa sinO - sina (cosO cosrp - i sinrp) 

X(COSO sina - SinO (cos (}' cosrp + i sinrp»)m /2 

cosB sina - sinO (cos (}' cosrp - i sinq;) 

xD~,m (cosB cosa + sinO sina cosrp) 

[ 
2 ]1/2 2u 

= 2u + 1 ~D:_I,m (cos a)D:, z-u (cosO)e/(/-u)~. (B5) 
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Replacing cp by (1T/2) - cp and using D~.m(z) 
=(-l) .... mD~n._m(z)' we can easily express (B5) in the 
form 

( 
cos a sine - sin a (case sincp _ i cosq., »)S /2 

cos a sine - sina (case sincp +i coscp) 

x (CaSe sinOl- s~ne (cos a s~nq; - ~ cosCP»)m /2 

cos e sin 01- sme (cos a Slncp + t cosq;) 

XD" (cosacose + sin a sine sincp) _.m 

= -- ~z D , .. m (cosOl)Ds "_I (case) e . ( 
2 )1/2 2 •.... , • • i(l-")~ 

2u + 1 1=0 -.. • 
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We prove that, if q I € CO(R3 )nL - (R 3) and q2 € [I'(R 3) nL 2 (R 3) are real-valued functions, the 
wave operators associated with the self-adjoint operators HI =-A + ql and H2 = - A +ql +q2 in 
L 2 (R 3) exist and are complete. We also prove that, if q I is periodic and q 2 is in a certain weighted 
L2 space X, the absolutely continuous part of H2 possesses two sets of generalized eigenfunctions 
which belong to the dual spaceX * of X and are solutions of linear equations involving the 
generalized eigenfunctions of HI. 

INTRODUCTION 

The present paper deals with some problems of 
spectral theory relative to the Schrodinger operator 
- A + ql + q2 in L2(R3), ql and q2 being real-valued poten
tial functions such that ql E C°(R3) n L"" (R3), 
q2 E £l(R3)n L2(R3). 

Our approach is based on scattering theory, with 
reference to - A + ql as the unperturbed operator HI 
and to - A + ql + q2 as the perturbed operator H2• 

We proceed as follows. In Sec. 1 we assume ql and 
q2 as above, and prove (Theorem 1) that the wave 
operators associated with the pair HI' H2 exist and are 
complete. In Sec. 2 we make the additional assumptions 
that ql is periodic, that HI is spectrally absolutely con
tinuous, and that q2 is in a certain weighted L2 space X. 

Because of the periodicity, HI possesses a "com
plete" set of generalized eigenfunctions (the so-called 
Bloch waves) which belong to the dual space X * of X. 
We prove (Theorem 2) that the absolutely continuous 
part of H2 possesses two "complete" sets of generalized 
eigenfunctions which belong to X * and are solutions of 
certain linear equations (the Lippmann-Schwinger equa
tions in an abstract form) involving the generalized 
eigenfunctions of HI' 

Our method consists in passing from HI and H2 to the 
resolvents (HI - a)-l and (H2 - a)-I, a being a suitable 
negative real number. This enables us, by means of a 
convenient estimate of (HI - a)-I, to apply the trace 
class method of scattering theory, as well as a pertur
bation method for eigenfunction expansions based on 
results of Kato and Kuroda. 1,2 

Let us recall that Kuroda3 has given a somewhat 
different treatment of distorted Bloch waves, by di
reCtly investigating the existence of strong boundary 
values for (H1-A'fiE)-1 as dO. 

1. EXISTENCE AND COMPLETENESS OF 
WAVE OPERATORS IN THE GENERAL CASE 

We denote by Ho the self-adjoint realization in L 2(R3) 
of the operator 

3 02 

-A=-~-2' 
i=lOXi 

and by Q 1 and Q2 the maximal multiplication operators 
corresponding to real-valued functions ql E L""(R3) and 
q2 E L 2(R3) , respectively. 

It is well known (see for instance Chap. V of Kato's 

book4) that the self-adjoint operators Ho, HI =Ho + Q1 
and H2 = Ho + Q1 + Q2 have the same domain: moreover, 
they are all bounded from below, that is, 

Hj-r~O, j=O,1,2, 

for a suitable real constant r. We have the spectral 
representation 

J +"" ( ) HJ = _"" AdEJ A , 

{E/A)} being the right-continuous spectral family asso
ciated with HJ; henc e, setting R J (t) = (HJ - t)-l for t in 
the resolvent set of HJ , we also have 

If, specifically, t equals a real number a < r, the 
spectral family {FJ (A)} associated with the self-adjoint 
operator - R J (a) satisfies5 

F/r)= EJ(P-l(r», (1.1) 

for every Borel set r c Rl, with 

1
-(t-a)-l for t~r, 

p(t)= 
- (r - a)-1 for t < r. 

Throughout this paper we shall deal with real-valued 
functions ql and q2 such that 

ql E CO(R3)n L""(R3) 

and 

Let us call K the maximum of I ql (x) I for x E R3 0 Let 
us also factor q2(X) as the product of the two square
integrable functions q21 (x) = I q2(X) 11 /2 and q22(X) 
= (signq2(x»lq2(X)1 1/ 2 ; Q2J is then the maximal multipli
cation operator by q2J(X), and Q2 = Q21 Q220 

In the next lemma we pre~nt an estimate of Rl (a) 
which follows from theorems about Wiener integrals; 
the negative real number a is fixed as above, so that, 
in particular, a < - K. 

Lemma 1.1: R 1 (a) is an integral operator whose 
kernel gl (x, y;a) satisfies the inequalities 

O,,;gl(x,y;a),,;go(x,y;a+K), a.e. (x,y)ER3xR3, (1.2) 

where go (x ,y;a + K) is the kernel of the integral operator 
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Ro(a+K), that is, 

go(x,y;a + K) =exp(- 1 a + KII/2Ix_ y 1 )/411lx - y I. 

Proof: The bounded operators e-tHo and e-tH1 , 0 < t < 
+ 00, are integral operators whose respective kernels 

Po(x,y;t) =exp(-Ix- y 1
2/4t)/(411t)3/2 and PI(X,y;t) 

satisfy6,7 

O~PI(x,y;t)~etKpo(x,y;t), (x,y)ER 3xR3• (1.2') 

For x"* y the integral 

J+'" etaetKpo(x,y;t)dt 
o 

exists and equals go(x,y;a+K),8 so that, by (1.2'), the 
integral 

also exists, and satisfies 

o ~ gl (x ,y;a) ~ go (x ,y;a + K). 

By applying the formula 

the lemma is proved. 

We are now in a position to investigate the perturba
tion problem relative to the operators - RI (a) and 
-R2 (a). 

Lemma 1.2: V=-R2(a) - (-R1(a» belongs to the trace 
class of operators in £2(R3). 

Proof: The second of the resolvent equations 

RI (a) - R 2(a) = RI (a)Q~2(a), RI (a) - R2(a) = R2(a)Q~1 (a) 

(1, 3) 

yields 

V =R1 (a) - R2(a) = [R2(a) (HI - a)][RI (a)Q~1 (a)]. 

Since R 2 (a)(HI - a) is bounded, it suffices to show that 
RI(a)Q~I(a)=RI(a)Q2IQ22RI(a) belongs to the trace class 0 

Now, it follows from Lemma 1.1 that R J (a)Q2J is an 
integral operator whose kernel k(x,y)=gl(x,y;a)q21(Y) 
satisfies 

that is, 

k(x,y) E L 2(R3 x R 3Jo 

Hence, RI (a) Q21 is in the Banach space B 2(H) of 
Hilbert-Schmidt operators in H = L2(R3). The same is 
true for Q2~1 (a), and the lemma is proved. 

We shall now recall some basic notions of scattering 
theory; for a detailed expOSition, see Kato's book, 4 
Chap. X. 

Let T I and T 2 be self -adjoint operators in a Hilbert 
space H. If H j ,aC denotes the subspace of absolute con
tinuity with respect to Tj' and Pj,ac the projection of H 
onto Hj,ac' j=l, 2, the limits 
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w<±) (T 2' T 1) = s-lim eitT2e-itT IPI,ac 
t .. : 00 

are called the wave operators associated with the pair 
Tl> T 2. When W(+)(T2, TJ exists, it is a partial iso
metry with initial set H I,ac and final set contained in 
H 2,ac; moreover, it satisfies the so-called intertwining 
relation 

A similar result holds for W(-)(T2, T I ) whenever it 
exists. 

W(+)(T2, T I ) or W(-)(T2, T I ) is said to be complete if 
its final set is all of H 2,ac' If either wave operator exists 
and is complete, then the part of TI inHI,ac is unitarily 
equivalent to the part of T 2 in H 2,oc' 

Reconsidering the operators HJ and -Rj(a), j=l, 2, 
we can now establish the main result of this section o 

Theorem 1: The wave operators W (±) (- R2 (a), - R I (a» 

exist and are complete; furthermore, 

(1.4) 

Proof: Lemma 1 0 2 yields the existence and complete
ness of W(±)(-R2(a), -RI(a» as consequences of a 
theorem by Kato on perturbations of the trace class; 
as for the identities (1. 4), they follow from Kato's 
invariance principle for wave operators. See Kato's 
book,4 Chapo X, Sec. 4. 

2. EIGENFUNCTION EXPANSIONS IN THE 
PEBLODIC CASf 

From now on we shall assume that the real-valued 
function ql (x) E C°(R3) n L <0 (R3) satisfies the identity 

ql(X+Z)=ql(X), xER3, 

for all triplets z of integer numbers. The self-adjoint 
operator HI = Ho + QI defined from -Il. + ql (x) in L 2 (R3) 
is then the Hamiltonian describing the motion of an elec
tron in an infinite periodic lattice 0 

For the spectral theory of HI, we follow Odeh and 
Keller. 9 Thus, let Q be the unit cube {x= (xl> x2, x 3 ) I 
o ~Xj ~ 1, j=1,2,3} in R 3

, and let Q* be the unit cube 
{k = (k l , k2' k3) I 0 ~ k j ~ 1, j = 1,2, 3} in the dual space of 
R3. Given k E Q*, let HI,I< be the self-adjoint realization 
of the operator 

3 iJ 
-Il. - 411i~kj -~ -+ (41121 k 12 + ql (x» 

j=1 ux} 

in £2 (Q) with periodic boundary conditions. 

Denoting by {Am(k) 1m = 1, 2," ,} the set of all the 
eigenvalues of HI,I< repeated according to their multi
plicities, we recall that the spectrum of the operator 
HI coincides with the set 

U {A (k)lkEQ*}. 
m=l m 

For kE Q* and m=1,2,"', let us denote by um(x,k), 
x E Q, the orthonormalized eigenfunction of HI,I< cor
responding to the eigenvalue Am(k). 
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By periodicity, urn (x, k) can be extended to the whole 
space. The bounded function 

1f
rn

(x, k) = e2.lk'Xum(x, k), x E R3, 

is then a generalized eigenfunctionlo of Hl , which cor
responds to Am(k) and is called a Bloch wave. 

The limit in the L2 mean, 

fm(k) = 1.i.m. J 1fm(x,k)f(x)dx, a.e. kEO*, c-_ Ixl"C 

exists for every fE L2(R3) and defines a bounded linear 
operator 

if m:f(x)-j m(k) 

from L2(R3) to L 2(0*). Tlie adjoint \jj;;, of \jjm.is given by 

(\jj!,0(x)=J *1f!(x,k)g(k)dk, xER3, 
n 

for gE £2(0*). We have the expansion formulas 
IJ. 

f(x) = 1. i. m.6 (\jj!iF f)(x), 
J.I.~+QO m=l m 

IJ. 

= 1. i. m .61 *1f!(X, k)lm(k)dk, a. e. XE R 3, 
jJ. .... +00 m=l Q 

(Bloch representation) and 

II fll~2(R3) = t.;111 mlli2(n*) (2.1) 

(Parseval's equality) for functions in L2(R3). 

It can be easily shown that, given any Borel subset 
r of Rl, (2.1) implies 

IIEl(r)f"-~2(R3) =P.Jxm(k)Er I J m(k) 1

2
dk. 

Throughout the rest of this paper we shall assume 
that our operator Hl is spectrally absolutely continuous, 
which is equivalent to saying that for each m the set 
{k E 0*: Am(k) E r} has measure zero whenever rcRl has 
measure zero. 

Let us set 

H(m) = (\jj!\jj .,)(H) , 

with 

The operator \jj m has the following property: 

(\jj m .1) if m is a partial isometry from H onto L 2(0*), 
with initial set H(m). Moreover, given any Borel subset 
r of Rl, the formula 

(\jj mEL (r) f)(k) =Xr(Am(k»(\jj mf)(k) , a. e. k E 0*, (2.2) 

is satisfied for every fEH. 

In (2.2), Xr denotes the characteristic function of r. 
Passing to the perturbed operator H2 = Hl + Q2' we 

assume that the perturbation is given by a real-valued 
function q2(X) such that 

(1+ Ixl)"q2(x)E£2(RS) 

for some a> 3/2. We set 

q2l(X) = (1 + Ixl )-" 
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and 

Q22(X) = Q2l (X)-lQ2(X) , 

denoting by Q2j the maximal multiplication operator 
assoc iated with q2j (x), so that Q2 = Q2l Q22' 

Let us introduce the weighted L2 space 

with norm 

IIflix =IIQ2U"H 

and its dual 

X*={g(x) I (1 + Ixl )-"g(x) EH}. 

Obviously, each generalized eigenfunction 1fm (x, k) is 
in X"" and the operator \jj m has the following property: 

(\jj m' 2) The formula 

(\jjmf)(k)=J 31fm(x,k)f(x)dx, kEO*, 
R 

is satisfied for every f EX. 

Denoting by W(±) the operators W(±)(H2,H) 
= W(±)(-R2(a), -Rl(a»[see (1.4)], let us define <1>~') 
=\jj.,W(±)*. 

The next theorem yields a representation of <1>~) in 
terms of generalized eigenfunctions of H2 lying in X . 

Theorem 2: For each m the operators <1>~±) have the 
following properties: 

(<1>~).1) <1>~') are partial isometries from H onto L2(0*) 
with initial sets W(·) (H(m» contained in the subspace 
H 2.ac of absolute continuity with respect to H2• Further
more, given any Borel subset r of Rl, the identities 

(<1>~)E2(r)j)(k)=Xr(Xm(k»(<1>~')f)(k), a.c. kEO*, 

are satisfied for every fE H ' 

(<1>~') • 2) For almost every k E 0* there exist two 
bounded linear operators G~) (k)*: X * - X * such that 
the formulas 

(<1>~)f)(k) = JR3<P~) (x, k)f(x)dx 

are satisfied for every f EX, with 

<p~.) (. ,k) = G~) (k)* (1fm(. ,k». 

The functions ct>!:) (x, k), x E R 3, are generalized 
eigenfunctions of H2 pertaining to the eigenvalue Xm(k). 

Proof: The proof of (<1>!:) • 1) is immediate, once 
having taken into account (\jj m .1) and the intertwining 
property of W (.) • 

As for (<1>~) , 2), we pass again from Hj = (: ME "X) 
to 

By (1.1), (2.2) is equivalent to 

(if .,Fl (r) f)(k) =Xr(- [Am(k) - a]-l)(\jj .,f)(k) , a. e, k E 0*, 

(2,3) 

for every fEH, r being any Borel subset of Rl, 

For X E R l, € > 0, let us consider the operators 
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V(-R(a) - A'F ie)-I, with V =R1 (a) - R 2(a). 

Lemma 2.1: For j = 1, 2 the following statements hold 
true: (I)j For every A E Rl and e > 0, the operators 
V( - R j (a) - A'F iE)-1 belong to the space B (X) of all 
bounded linear operators in X . (II)! For almost every 
A E Rl, the limits 

Qj(z)(A)=s-lim V(-RJ(a)-A'FiE)-l, j=1, 2, 
.. 0 

exist inB (X). 

For the moment let us accept this lemma as proved. 
We then apply a theorem by Kato and Kuroda1 with re
spect to the self-adjoint operators -R1 (a) and -R2 (a) 
and to the partial isometries 

<l>!:) == W m W(z)( - R 2 (a), - Rl (a»*, 

considering (2.3) instead of (2.2) for wm ' 

In this way we can set 

G!:)(k)==I+Q~z)(-[Am(k)-aJ-l): X-X, 

where k ranges all over n* except for a set of measure 
zero. We thus obtain the operators G~z)(k)*: X * - X * 
which satisfy all the required properties. 

Finally, a direct argument based on the part of the 
theorem already proved ensures that the functions 
¢!:)(x, k) are solutions of 

in the sense of distributions. 2 

Proof of Lemma 2.1: Let us start by proving that 
both operators Q;tRl (a)Q2 and Q~iR2(a)Q2 belong to the 
Hilbert-Schmidt class B 2(H)' Since the first equation in 
(1. 3) yields 

Q;iR 2(a)Q2 = Q;iRl (a)Q2 - Q;iR I (a)QzR2(a)Q2 , 

it suffices to show that Q;;iRI (a)Q2 is a Hilbert-Schmidt 
operator. Now, it follows from (1.2) that the kernel 
lex ,y) = (1 + I xl )"'gl (x, y;a)Q2(Y) of Q;iRI (a) Q2 satisfies 
the inequality 

Il(x, y) I ~ (1 + I x I ) "'go (x - y;a+ K)(1 + I y I )-'" I Q22(y) I, 

with 

go(x-y; a+K)==exp(-la+KI I/2 Ix-y/)/4Ix-yl, 

Q22 EH. 

According to a well-known inequality by Peetre, 
there exists a positive constant C such that 

(1 + Ixl)"'(1 + Iyl)-"'.:;C(l + Ix-yl)"', (x,y)ER3XR3 • 

(2.5) 

Upon inserting (2.5) into (2.4), it is evident that 
l(x,y)E £2(R3XR3), and therefore Q;fR1(a)Q2 EB 2 (H). 

On the other hand, the second equation in (1. 3) yields 
R2(a)Q21 =R1 (a)Q21 - R2(a)QzRl (a)Q21' 

Since R2(a)Q2 is bounded and Rl (a)Q21 is a Hilbert
Schmidt operator (see the proof of Lemma 1. 2), it 
follows that R 2(a)Q21 is a Hilbert-Schmidt operator as 
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well. 

Let us now remark that 

Q;~ V( - RI (a) - A'F iE)-IQ21 

because Rl (a) commutes with (- Rl (a) - A'F iE)-I. Thus, 
given any function f in X, we have 

II V( - Rl (a) - A'f ie)-lfli x 

= I/Q2W( -R1 (a) - A'F iE)-lQ2l Q;UltH 

.:; IiQ;~R2(a)Q2( -R1(a) - A'fie)-lR 1(a)Q21 I1S (H)lIfltx , 
2 

(2.6) 

for every A E Rl, e > 0, which proves (1)1' 

As for (Il)l> let us set 

Al == Q;iR2 (a)Q2' Bl =Rl (a)Q2l> 0'1 (/l) =A1F1 (/l)B1• 
Given any decomposition of Rl into intervals r

k
= [Ak , 

Ak+J, , k == 0, 1 , •• " n - 1, with - 00 = Ao < Al < ... < An_1 

< An = + 00, the B 2(H)-valued function 0'1 (/l) satisfies 
rr-l 

~IIO'I(r k)II
S2

(H) 

.:;/Po /fAlFl (r k)l~ 2(H)lfFl (r ,)B 1 1h 2(H) 

.:; (~It AIFI (r k)II&(H)Y 12( ~IIFI (r k)B 1 11&(H») 1/2 

.:; II A1IiS2(H)1I BIlls 2(N)' 

Hence it follows from a theorem by Asanoll that for 
a. e. A ERI the operators 

A (-R (a)-A'fie)-lB =f+~ dO'I(/l). 
1 1 1 _~ /l _ A l' Zf 

converge in the norm of S 2(N) as e ~ O. We then obtain 
(11)1 by taking (2.6) into account. 

The statements (1)2 and (11)2 can be demonstrated 
Similarly. In fact, since R2 (a) commutes with (-R

2
(a) 

- A'f ie)-I, we have 

Q~W( - R2 (a) - A'f ie)-lQ21 

== Q;iR l (a)Q2( - R2(a) - A'f ie)-IR2(a)Q2P 

and consequently, given any fE X , we obtain 

II V( - R 2 (a) -A'f ie)-lfllx 

.:; II Q;iRI (a)Qz( - R2(a) - A l' ie)-IR2(a)Q21IlS2(H)1I fl/x 

which yields (1)2' Setting 

A2 = Q2iRI (a)Q2' B2 =R2(a)Qw 0'2(/l) =A2F 2(/l)B2, 

we can again apply Asano's theorem, this time with 
respect to the operators 

A (-R (a)-Ai'i€)-IB =1+00 d0'2(/l) 
2 2 2 _'" /l _ A'F iE ' 
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thus proving (n)2' 

Remark: Let 1 be any element of H 2,(JJ;' and let gt") 
== W<±)*I. From the identity 

IIg<±) lIiI = ,EHi' mgt") IIL 2<0*) 

it follows that 

II 1112 := t'lllJl W<±)*/11 2
2 * 

H ,1 !II L (0 ) 
2.ac m 

This can be expressed by saying that both sets 
{cf>~.)(. ,k)} and {cp~)(. ,k)} of distorted Bloch waves are 
"complete" in H 2,ac • 

ACKNOWLEDGMENTS 

I wish to thank Professor P.D. Lax, who suggested 
this problem to me, Professor S. Agmon, Professor T. 
Kato, Professor S. T. Kuroda, and Professor G. 
Talenti, to whom I submitted the various drafts of the 

J. Math. Phys., Vol. 15, No. 12, December 1974 

paper, and Professor G. Gallavotti, who gave me ideas 
as to how to proceed. 

IT. Kato and S. T. Kuroda, "Theory of simple scattering and 
eigenfunction expansions, " in Functional Analysis and Related 
Fields, edited by F. E. Browder (Springer, Berlin, 1970), 
pp. 99-131. 

2T. Kato and S. T. Kuroda, Rocky Mountain Math. 1, 127 
(1971). 

3S. T. Kuroda, "A stationary method of scattering and some 
applications," in Proceedings of the International Conference 
on Functional Analysis and Related Topics, Tokyo, April 
1969 (University of Tokyo Press, Tokyo, 1970). 

4T. Kato, Perturbation Theory for Linear Operators 
(Springer, Berlin, 1966), 

5N. Dunford and J. T. Schwartz, Linear Operators (1ntersci
ence, New York, 1963), Part II, Thm. XU. 2.9. 

6J. Ginibre, J. Math. Phys. 6, 238 (1967). 
7E. Nelson, J. Math. Phys. 5, 332 (1964). 
8A. Erdelyi (Bateman manuscript project), Tables of Integral 
Transforms (McGraw-Hill, New York, 1953), Vol. 1, Sec. 
4.5.(28). 

9F. Odeh and J. B. Keller, J. Math. Phys. 5, 1499 (1964). 
1°1. M. Gelfand and G. E. Shilov, Generalized Functions (Aca

demic, New York, 1967), Vol. 3, Chap. IV. 
11K. Asano, Proc. Jap. Acad. 43, 572 (1967). 



                                                                                                                                    

Relativistic quantum mechanics and local gauge symmetry 
P. Roman and J. P. Leveille 

Department of Physics. Boston University. Boston, Massachusetts 02215 
(Received 30 May 1974) 

The requirement that (either Abelian or non-Abelian) local symmetry transformations be globally and 
unitarily implementable kinematical symmetries of relativistic systems implies the emergence of a 
dynamical group which has been suggested in earlier studies. The group leads to a 4-velocity 
operator and to the Newton-Wigner position operator. Demanding gauge invariance of localization 
determines a unique interaction structure. Superselection rules for the gauge charges arise. 

I. INTRODUCTION 

The now generally accepted success of unified theories 
of weak, electromagnetic, and strong interactions, 
based on local gauge groups combined with spontaneous 
symmetry breaking, 1 makes it plausible that local gauge 
symmetries playa fundamental role in nature. However, 
no connection between the internal dynamical invariance 
(associated with the gauge group) and the conventional 
relativistic space-time symmetry (Poincare group) 
seems to be present. 

On the other hand, in a recent study2 we showed that, 
in nonrelativistic quantum theory, the requirement that 
a local phase transformation be an automorphism of 
Hilbert space, leads in a very natural manner to the 
Galilean structure of nonrelativistic quantum dynamics. 
In other words, here the postulate of local gauge sym
metry is not only intimately related to the space-time 
group of kinematical and inertial transformations (as 
was already pointed out in various specific contexts by 
Jauch,3 Piron,4 and Levy-Leblond5) but in fact it es
sentially determines the complete dynamics. The so
determined dynamical group contains, besides the 
Euclidean kinematical transformations, the time dis
placements and the Galilean boosts. The generators of 
the latter play the role of the position operators. We 
also demonstrated that by additionally demanding gauge 
invariance of localization, a unique form of interaction, 
viz. the usual minimal interaction, emerges. 

The purpose of the present work is to show that en
tirely analogous conSiderations in the relativistic case 
lead also to the emergence of a dynamical group from 
the postulate that local gauge symmetry be a unitarily 
implementable kinematical symmetry (in the sense of 
Jauch3). This relativistic dynamical group contains, be
sides the kinematical Poincare transformations, a co
variant development transformation subgroup with 
respect to what may be called historical time, 6 and an 
Abelian subgroup which may be called the group of 
relativistic Galilean boosts. As a matter of fact, the 
relativistic dynamical group so obtained coincides with 
the group q 5 which, from completely different considera
tions and by way of a somewhat naive analogy, one of us 
suggested several years ago. 7 Even though G 5 has been 
subsequently studied in considerable detail, 8-11 its physi
cal content remained rather obscure. The present paper 
to a large extent remedies these shortcomings of inter
pretation. We also study here the consequences of a 
non-Abelian local gauge symmetry. Finally, we conSider 
interacting systems subject to gauge arguments. 

In much of this paper we follow closely the pattern 
used in our corresponding studr of the nonrelativistic 
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case. Even though the present work is self-contained, 
the reader is urged to first study Ref. 2, mainly be
cause now, for the sake of brevity, we do not repeat in 
detail the motivations for the various steps in the argu
ment, provided they are analogous to the nonrelativistic 
case. 

II. THE KINEMATICAL GROUP 

We adopt the usual geometry of special relativity: 

Assumption 1: The space of events is the homogeneous 
and isotropiC Minkowski space E 3 ,1' 

This immediately implies the existence of the 
I Poincare group P=SO(3, 1)0 T/ with12 ,13 

[p,..,pJ=O, [J,..v,Po]=i(gvo P ,.. -go,..P), 

[J /.IV' J po] = i(g"pJ /.10 - g,..p J vo - g,..aJp" + gvoJp,..)· 

(2.1) 

This algebra can be realized on the Hilbert space of 
square-integrable wavefunctions Iji(x) by setting 

(2.2) 

Recall here that the inner product in the Hilbert space 
is defined by 

(cp, Iji) =i Jo cp*(xfa: w(x)tfx. (2.3) 
" 

Next, following the familiar arguments14
•
15 we stipu

late that the phase of a wavefunction is a matter of con
vention, even when comparing phases at different world 
points. In view of Wigner's theorem, 16 this demand that 
a local phase transformation be an automorphism of 
Hilbert space, can be formalized by 

Assumption 2: To every transformation 

Iji(x)- exp[iw(x)] Iji(x) (2.4) 

with a differentiable w(x), there corresponds in Hilbert 
space a unitary operator U such that 

(lj Iji) (x) = exp[iw(x)] 1/1 (x). (2.5) 

Using (2.2) we find that 

(lj P,.. U-11ji) (x) = exp(iw) [id,.. exp( - iW)1ji (x)] 

=(id u+ d,..W) 1/1 (x), 

i. e., under a local phase transformation (2.4) 

PU-P,..+duW. (2.6) 

Similarly, we find that 

J .. v -J .. v + (X .. d"W - X"d .. w). (2.7) 

It follows that, unless we enlarge the algebra of obser
vables, (2.4) cannot be considered to be a unitarily im
plementable permutation of observables, i. e., local 

Copyright © 1974 American Institute of Physics 2053 



                                                                                                                                    

2054 P. Roman and J.P. Leveille: Relativistic quantum mechanics 2054 

phase transformations could not be kinematical trans
formations in Jauch's sense. 3 Indeed, if V = exp(iF) 
(where, at this stage, F can be a function of only P jL and 
J uv)' Eq. (2.6) would imply 

(2.8) 

which cannot be satisfied (unless w = const), since d u w 
is a c-number multiple of the identity. We therefore 
postUlate 

Assumption 3: The algebra of observables is large 
enough to guarantee that arbitrary local phase trans
formations with a differentiable w(x) are kinematical 
transformations. 

To satisfy this postulate, it SUffices to adjoin to the 
set {P", J jL) the identity operator I and four additional 
commuting operators Q u which, in fact, generate the 
linear local phase transformations corresponding to 
w(x) = cjLxu, Cu constant. Indeed, if we take w(x) = c"xu 

and write17 F = -lcuQ ", then Eq. (2.8) is satisfied 
provided 

(2.9) 

Since the cjL are linearly independent, we also have 

These equations tell us that we can realize Q jL by 

Q" -_I-Ix". 

Then, with V = exp( - ilcaQcr) we have 

V J uvV-1 =J /LV - ilca[Qcr' JjLv] + "', 

(2. 10) 

(2.11) 

so that comparing with (2.7), using (2. 11) and noting that 
now d.W = c p' we see that consistency requires 

[J uv' Qa] = i(gvcrQjL - gau Qv)' (2.12) 

If now w(x) = L: ;=0 c(a~n)x")n is an arbitrary differentiable 
function, then the effect of the corresponding unitary 
transformation U [as defined by (2.5)] on the operator 
algebra is characterized by (2.6), (2.7), and 

(2.13) 

Since djLW and xudvW in (2.6) and (2.7) are power series 
in the xjL and since the realization (2.11) holds, the rhs 
of (2.6), (2.7), (2.13) represent merely a permutation 
of the operator algebra, so that we indeed have a kine
matical symmetry transformation. This concludes the 
proof that the algebra of observables generated by the 
set {p u' J uv' QjL' I} is large enough to assure that all 
local phase transformations be kinematical 
transformations. 

It should be noted that the "relativistic Heisenberg 
commutation relations" (2.9), the commutativity rela
tions (2.10), and Eq. (2.12) (which says that Qa is a 
vector operator under the Lorentz group) arose as con
sistency requirements. 

If we consider the special case of linear local phase 
transformations, w(x) = c jLxu, then we have 

(2.14) 
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describing the effect of this special transformation on 
the algebra of observables. From the foregoing we see 
that the Q jL are analogous to the well-known boosts of 
Galilean systems. We therefore call the QjL "relativistic 
Galilean boosts, " (RG boostslB for short); and then (2. 14) 
tells us that the RG boost transformations arise as 
particular local phase transformations. 

The algebra of observables is fully characterized by 
the Lie relations (2.1), (2.9), (2.10), (2.12). This 
algebra has been previously introduced, via a some
what ad hoc argument, by Johnson19 and also by 
Broyles20 and it forms a subalgebra of a group first 
considered by CasteU21 and later, independently, by 
one of us in Ref. 7. The structure of the corresponding 
simply connected group is 

K =SL(2, C)J 0 [T 4P 0 (T 4 Ox T 1,-1)]. (2. 15) 

Here SL(2, C) arises as the universal covering group of 
SO(3,1). Consequently, the wavefunctions will be vector 
valued representations and should be properly labeled as 

l/J (x) = ,I, k, c (x) 
"f's,s3 ' (2. 16) 

where k, c characterize the irreducible unitary rep
resentations of SL(2, C) and the state labels s, S3 are as
sociated with the Casimir operators of the reduction 
chain SL(2, Cb SU(2b SO(2). Correspondingly, the 
realization (2.2) of JjLV must be changed to 

(2. 17) 

where LjLV is an SL(2, C) matrix. We define SL(2, C) 
spin T JLV as the difference between the total and "orbital" 
SL(2, C) angular momentum 6-vectors, i. e., set 

(2.18) 

It is easily seen that the Casimir invariants of K are 

C2=1T"v Tuv , 

C3 = t EuvpcrTuV T·a. 

(2. 19a) 

(2. 19b) 

(2. 19c) 

Here C 1 arose from linear phase transformations and 
indicates a superselection rule (about which we shall 
comment later on). Because of (2.18), the spectra of 
C2 and C3 are 

C2 = (k2 + c2 
- 1), 

C3=2ikc, 

where21 

k=O, 1/2, 1, .. , 

and 

c = ia with - 00 < a < + 00 • 

(2.20a) 

(2.20b) 

(2.20c) 

The state labels s, S3 [being the eigenvalues of -rz where 
T=(T23 , T31> T 12) and of T3=T12' respectively] have the 
spectra 

s=k, k+l, k+2, "', 

S3 = - s, - s + 1, ... , s - 1, s. 

(2. 21a) 

(2. 21b) 

Thus, the irreducible unitary representations of K 
are characterized by specifying a scale 1-1 of phase and 
a spin-tower (k, c); and the additional state labels deter
mine spin and spin component. Since these are kinemati-
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cal labels of a certain set of states, we call K the 
kinematical group. 

'III. THE DYNAMICAL GROUP 

To introduce dynamics, we define a development 
transformation of an isolated system as a kinematical 
symmetry characterized by 

p .. -p .. , J .. v-J .. v, Q .. -f(Qv, P v' J pa)' 

This rather obvious definition is motivated by the re
quirement that the intrinsic development must be com
patible with the geometry of events, i. e., that its gen
erator be invariant under p. It is also natural to desire 
that development transformations form an Abelian group 
(cf. Ref. 2). A simplicity requirement leads to the 
more specific 

Assumption 4: Development transformations form a 
one-parameter Lie group T/. 

Then any development transformation a will be rep
resented by a unitary operator U a= exp(iaS). Concerning 
the generator S we make the rather weak 

Assumption 5: S is contained in the algebra of ob
servables generated by PI" Q v' J pa' 

Combined with the Poincare invariance requirement 
inherent in the definition of a development transforma
tion, this tells us that the most general form of S is23 

(3. 1) 

Now we observe that the relation "A - B iff B 
= U aAUa- I for some a" is an equivalence relation on the 
algebra of observables. It is therefore natural to define 
a dynamical group G by 

Assumption 6: The kinematical group K is isomorphic 
to the quotient group modulo TIS of some group G, 
i. e., K"'G/T/. 

This implies that the generators of K and 5 together 
must form a closed Lie algebra. Consequently, the 
rhs of (3. 1) becomes unique24 and we have 

5 == - (l/2)p2 + (1/2}f)I' (3.2) 

Here f) I is an arbitrary constant and the scale factor 
-1/2 has been chosen for convenience and to conform 
with the notation of Refs. 7-9. 

From (3.2) and (2.9) we can find the Lie brackets of 
S. Together with the previously established brackets, 
we have a closed Lie algebra as follows: 

[PI" pJ=O, [Q .. , Q.]=O, 

(PI" Q.J = - il-Ig .. v, 

(J u.' J pa ] == i(gvpJ ua - g .. pJvu - g .. aJp. + g.u J ... ), 

(J ... , Pa]==i(g.a P" -ga"p.), 

(J .. v, QaJ==i(g.aQ" -ga" Q), 

(S,P.,J==O, [S,J ... J==0, 

(S,Q.,J==iP". 

(3.3a) 

(3.3b) 

(3.3c) 

(3. 3d) 

(3.3e) 

(3.3f) 

(3.3g) 

The corresponding 16-parameter simply connected 
dynamical group has the structure 
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G == TIS 0 K == T/ 0 {SL(2, C)I 0 (T4P0 (T4 Ox TIZ-I)n 

(3.4) 

This is precisely the "relativistic quantum mechanical 
grouP" ;; 5 first introduced by CasteU2I and, independent
ly by one of US25 in Ref. 7. 

As has been already shown in Refs. 
Casimir invariants of ;; 5 are 

[)o=l-II, 

f) I == p2 + 21-15, 

!J2=t T uv T "v, 

j) 3 = tE"vpa T"v TPu. 

7 and 8, the 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

Here the T u. are defined by (2.18), and (3. 5c, d) are the 
Casimir invariants of the corresponding internal SL(2, C) 
algebra. The irreducible unitary representations of ij5 
can be denoted by the symbol (ll[)u k, c). They have 
been explicitly constructed and studied in detail in Ref. 9. 

For the purpose of the follOwing discussion it will be 
useful to write 

(3.6) 

so that q5 appears as the scalar central extension of an 
(abstract) 15-parameter "geometrical" group g 5' In 
g 5 we consider the SL(2, C)oT part replaced by SO(3, 1)/. 
Denoting the parameters of TIS, T/, T4o, SO(3,1)/by 
a, a, b, A, respectively, exponentiation of the Lie 
algebra leads to the composition law 

(a, a, b, A)(u,a, b, A)==(a+ a, a + Aa+ ab, b + Ab, AA). 

(3.7) 

If we want to represent this abstract group on some 
homogeneous space, the simplest choice is to take the 
left coset space g /50(3,1)1 0 T4 o, whose elements 
(i. e., the cosets of 50(3,1)1 0 T4 oJ can be characterized 
by the pair (if, a). Then (3. 7) gives the left action of 
g 5 on the coset space as 

(a, a) - (0'+ a, Aa + a + ab). (3.8) 

Employing the mapping (a, a) - (u, x), our homogeneous 
space may be identified with a five-dimensional space 
E 3 ,I(X)XEI (u) and (3.8) gives 

u-u+a, 

(3.9) 

This transformation group of endomorphisms of E 3 )x) 
XEI(u) represents the active viewpoint ofg 5 • In Ref. 7 
we actually defined q 5 in this way. However, we were 
not able to give a completely satisfactory interpreta
tion26 for the fifth variable u. But now, we can interpret 
u in a purely group theoretical manner. The one-dimen
sional space E1(u) is introduced, not at the start of 
kinematical considerations, but rather it emerges as a 
convenience permitting a simple active characterization 
of the abstract dynamical group. As we already showed 
in another context,27 one can use a different homo
geneous space, for example q s/SO(3, 1)/ and then one is 
led to a representation of q 5 on the tangent space 
E S ,1(X)XEs ,I(O, where no explicit concept corresponding 
to u arises. 
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Once, however, the choice has been made to use the 
homogeneous space as specified above, we are led, in 
a natural manner, to a sequence of incoherent Hilbert 
spaces and to the description of intrinsic dynamical 
development in terms of a progression by the param
eter u. We define, for each u, a Hilbert space H u of 
square-integrable functions28 by setting 

I/J(X;u) = exp( - iuS)l/J(x). (3.10) . 

The total Hilbert space H is then a suitable direct inte
gral of the "slices" H u' In view of (3.10), it is clear that 
u can be interpreted as historical time which does not 
pertain to a particle, nor to an event, but it rather 
parametrizes a sequence of descriptions, or equivalent
ly, a sequence of sets of ~easurements on events. This 
is precisely the concept of historical time as discussed 
by Horwitz and Piron. 6 Historical time u is the exact 
analog of "universal time t" in nonrelativistic physics. 29 

We wish to emphasize once again that it was not neces
sary, in our present framework based on local gauge 
symmetry, to introduce historical time from the out
set, but it rather emerged naturally in a group theoretic 
analysis, Similarly as nonrelativistic universal time 
was "deduced" in Ref. 2. We also note that now Splays 
the role of a dynamical development operator, analogous 
to H in Galilean physics. S generates the displacement 
in historical time for relativistiC descriptions, while 
H generates the displacement in Newtonian universal 
time for nonrelativistic systems. 

So far the observables P u' Q u' J "V' S were realized 
on H u=O' We now ask for their realization by differential 
operators on all of H. A glance at the commutation 
relations (3. 3a)-(3. 3g) tells us that we can set 

P v -ia v' 

Qv - - 1-1xv + iua v' 

J "V -i(x "a v -xva u) + ~"v' 
S -ia u ' 

(3.11) 

In particular, S assumes a double role: on each slice 
H u it has the realization 

1 I 
5-'2 0 +201 ' 

[cf. (3.2)], whereas onH it is given by ia u' This is 
emphasized if one applies the Casimir invariant D 1 onto 
the function space I/J(x;u). One obtains30 

(3.12) 

This is the analog of the nonrelativistic Schrodinger 
equation. If one introduces the Fourier transform 

cp(r,p)=J exp[i(ru+px)]I/J(x;u)du d 4x, 

then (3. 12) becomes 

(p2 + 21-1r)cp(r, p) = O. 

(3.13) 

(3.14) 

We note that p2 + 2Z-1r=0 defines the orbits of the rep
resentation (for j) 1 = 0). 

Let us summarize. Postulating that local phase trans
formations be a kinematical symmetry for relativistic 
systems, we were led to the existence of the event
position operators Qu and to the kinematical group K 
generated by P u' Q", J uv' I. The latter contains 
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Heisenberg-type commutation relations. Defining dy
namical development as a set of transformations that 
leave Pu ' J uv unchanged but alter Q", we arrived, on 
the basis of very simple and natural additional assump
tions, ~t the quantum mechanical relativistic dynamical 
group q 5 for isolated systems. This group can be con
sidered as a group extension (by a non-Abelian group) 
of the Lorentz group, cf. Ref. 10. The Poincare in
variant development operator S can be interpreted as the 
generator of displacements in historical time. Its effect 
on the event-position operators Q u is characterized by 
Eq. (3.3g). In the next section we show how the Q" 
operators can be related to the Newton-Wigner position 
operators of a particle with fixed mass, how a 4-velocity 
emerges, and how, more generally, the g 5 group can 
be interpreted in conventional terms. 

IV. PHYSICAL INTERPRETATION 

In Galilean phYSics, elements of the event space E3 
have a simple and direct interpretation: The event x 
means that (at some time t) there is a particle at x. In 
the Einsteinian relativistic theory, however, the element 
Xu of the event space E 3 •1 represents a "world event" 
(at some historical time u) in the accustomed sense, 
which can be best interpreted as the intersection of two 
world lines associated with two different particles. 
Consequently, the operators Q" are not associated with 
individual particles, they only localize events. Corres
ponding to this circumstance we also find that the unitary 
irreducible representations of fj 5 do not characterize 
"elementary particles" in Wigner's sense. 31 Indeed, 
fixing the value of the first Casimir invariant to be, 
say, 30 j)1 =0, Eq. (3. 5b) gives p 2 = - 21-1S, and since 
S - ia u has a continuous spectrum, states with any value 
for M2 =p2 will occur in the representation space, 
- 00 < M2 < + 00. In other words, M2 is not a representa
tion label but only a state label. 32 Accordingly, particles 
will be associated with certain subspaces with fixed M2. 
In order to study particle properties, we must study the 
action of observables on these subspaces. 

As was discussed in Ref. 9, a unitary irreducible 
representation of g 5 is spanned by the basiS states33 

I r, P) which obey the relations 

Pulr,p)=p"lr,p), Slr,p)=rlr,p). 

The normalization is (r',p'lr,p)=o(r ' -r)o(p' -p), 
where the g 5 -invariant inner product is defined by Eq. 
(3. 7) of Ref. 9. If we fix the orbit by takin~o D 1 = 0, 
then p2 + 2r1r= 0, so that for the "physical states" that 
obey the wave equation, the label r becomes redundant. 34 

Thus, we introduce the states IP), obeying 

(P upu + 21- 1S) I p) = 0 

and normalize them by35 

(p Ipl) = o(P - p'). 

(4.1) 

(4.2) 

The behavior of these states under the action of the 
unitary operators corresponding to the various sub
groups of g 5 is easily found36 from Eqs. (3.10) and 
(3.5a) of Ref. 9: 

J uv : lj(A)lp)= IA-1p), 

Pu : lj(a) Ip) =exp(ipa) Ip), 

(4.3a) 

(4.3b) 
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QIL: lj(b)lp)= Ip-l-1b>, 

S lj(a) lp) =exp[-i(1/2)p2a]Ip>· 

In particular, from (4. 3c) we get 

d:1L lj(b)lp) Ib=O :iQ"lp)= d:" Ip-l-1b) Ib=O' 

from which follows that 

In a similar manner, (4.3b) gives 

(4.3c) 

(4. 3d) 

(4.4a) 

(4.4b) 

We now introduce Dirac kets and wavefunctions by 
setting 

II/J) = f d
4
p qJ (P) lp)· 

Clearly, from (4.2), 

(1/J11/J)=llqJJIZ=! IqJ(p)1 2d
4
p. 

(4.5) 

(4.6) 

Thus, in the momentum space the wave functions cor
responding to the physical states are the square-inte
grable functions (with respect to Lebesgue measure in 
R4

). 

Consider now "mass-shell states" 

(4.7) 

which obey p2Ip,M) =M2Ip,M) (where we take M2> 0). 
To make sure that the corresponding wavefunctions are 
square integrable (i. e., that these states really belong 
to our Hilbert space) and in fact to find the normalization 
of these states, we must proceed carefully. 37 Consider 
the set38 

E={plp=AP, AESL(2,C), P=(M,O,O,O)}. (4.8) 

Let qJ(p) be a square-integrable wavefunction and define 

(4.9) 

where XE is the characteristic function of E. That is, 

{
qJ(P) if PEE, 

qJM(P) = XE(P)qJ(P) = ° if PriE. 

Since 

the qJM are admissible wavefunctions. Actually, since 
the effect of XE is simply to put a mass-shell condition 
on qJ(p), we can calculate39 

II qJ MJIZ = ! lpXE 1 qJ 12 = ! d
4
P o(p2/M2 - 1 )e(po) 1 qJ(pW 

Here, and in the sequel, it is understood that 

Po: VpZ +M2. 

We introduce the on-mass-shell Dirac kets 

which can be also written as 
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(4. lOa) 

(4. lOb) 

(4. 11 a) 

(4.11b) 

We then have 

(I/JM II/JM) = II qJM 112 =M4 f ~~ qJ*(p') (P', M I p, M) qJ(p) ~ta . 
Comparing this with (4. lOa), we see that 

(p, Mlp' ,M) =M-2 2poO(p - p'). (4.12) 

Thus, the mass-shell states I p, M) have Poincarl! in
variant normalization. 40 Obviously they do not span the 
q 5 representation space, but they span a representation 
space of the Poincare group, and as we saw, they are 
bona fide C 5-states. In view of this, Eqs. (4. 4a, b) hold 
true for the I p, M) states. In summary we can say that 
"particles" correspond to the subspaces of the q 5 Hilbert 
space which are spanned by the subset I p, M) (fixed M) 
of the set IP) of phYSical;; 5 states. 

We can now study physical questions. The most gen
eral particle states (with mass M) are given by (4. 11b), 
with (4. lOb) understood. They obey 

p21I/JM)=M21I/JM) (4.13) 

and they norm is given [cf. (4.12)] by 

(zPM II/JM) =M2 f :;; I qJ(Po' p) 12. (4.14) 

ConSider the operator M z" ",M-1Q u' Because of (3. 3g), 

MZ IL '" - irS, MZ/L]=M-1P". (4.15) 

Therefore, using (4. 13), 

MZ"MZ"II/JM)= II/JM)' (4.16) 

Thus, on the particle subspace which consists of M
mass shell states, M Z" acts as the 4-velocity operator. 

Next, we wish to determine localized particle 
states. Since they must be well-defined particle states 
with sharp mass, we define 

(4.17) 

Since lj(x)=exp(ixkPk)=exp(- iXP), from (4.11b) we get 

J d3 
/I/JM; x) = ~ exp( - ixp) qJ(Po, p) I p, M), (4.18) 

with (4. lOb) understood. Adopting the Newton-Wigner41 

localization requirement, we demand that 

(I/JM;X 1 lj(- a) II/JM ;x) =0 if a*O. 

Using (4. 18) and (4. 12), this gives easily 

f ~~ exp(iap) /qJ(pW=O if a*O, 

so that, assuming the usual regularity condition, 41 we 
have 

qJ(p) = I2fio (4.19) 

(apart from an unessential constant of dimension42 
[length]5/2) for the wavefunction of the localized state in 
(4.18). Therefore, from (4.18) we obtain, when using 
(4. 4a) and doing a partial integration, the following: 
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or, 

= - WI f ~ (ix" + ip/ p~) exp( - ixp) I p, M) 
';2po 

=~k-i~) r1f ,;:~ exp(-ixp) Ip,M), 

in view of (4.18) and (4. 19), 

~Qk+i~) IlPM;X)=X k IlPMi X). (4.20) 

This tells us that 

M _ • .!:.L 
W,,= lQ" + t 2p2 

o 
(4.21) 

is precisely the Newton-Wigner position operator in 
configuration space and the states IlPM ; x), given by 
(4.18) with (4.19) and (4.10b) understood, are the 
localized N-W one-particle states with mass M. Note 
that these localized states are simultaneous eigenstates 
of p2=M2 and of MWk , as it should be. Using (4.4a, b), 
the N-W operator (4.21) can be realized in momentum 
space by 

MW . 0 +' p" 
k - t a pk t 2P~ , (4.22) 

which is its familiar form. 

The presence of 1 in (4.21) also sheds light on the 
meaning of this constant. It clearly determines the scale 
of length. 43 Turning to conventional c. g. s. units, one 
should identify - Z-l with Planck's constant n. This is 
also born out by Eqs. (4. 4a, b). In conventional units, 
when P", is represented by P", Q" ought to be repre
sented by - in 0 lop". Comparison with (4. 4a) gives then 
indeed l-1 = - n. The superselection rule connected with 
1 merely selects the world with a particular "quantal 
scale. " It is interesting to note that this is not the case 
for Galilean (nonrelativistic) physics. There the cor
responding superselection rule selects a particular 
Galilean mass M. 

Let us summarize. From the event-position operator 
Q" of ~ 5 we can construct, for .each given particle sub
space, a 4-velocity operator MZ" and a Newton-Wigner 
position operator MW". The former is in the Lie algebra 
of g 5' the latter is a function in the enveloping algebra. 
In fact, the configuration space operator (4.21) emerges 
naturally and its nonlocality is explicit. The physical 
mass shell particle states and even the corresponding 
localized states are bona fide states in the Hilbert space 
of {;5' 

V. NON-ABELIAN GAUGE SYMMETRY 

Since the dynamics of elementary particles appears 
to be governed by some non-Abelian local gauge group, 
one might ask: What happens if we replace our funda
mental Assumption 2 concerning local phase symmetry 
by the more reasonable requirement of local non-Abelian 
gauge symmetry? In this section we show that even in 
this more general case the {; 5 structure again emerges, 
and the dynamical group is simply the direct product of 
q 5 with the non-Abelian symmetry group. 

Let A be a compact N-parameter (simple) Lie group 
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with Hermitian generators fa (a= 1, 2, ... ,N) and with 
the Lie algebra44 

[Ia Ib) - id fC , - abc • (5.1) 

The underlying space of events will be thought of as 
E 3 ,1 xA and the corresponding Lie algebra of generators 
consists of the Poincari! relations (2.1) together with 
(5.1) and 

(5.2) 

This algebra can be realized on a Hilbert space of A
vector valued functions 

<I> = '/'(X)xBI'''' .Bs (5.3) 
\f" '1'0'. ,r'T ' 

where the B i (i = 1, ... , s) denote the Casimir invariants 
of A and the r" (O! = 1, ... , r) are state labels for a fixed 
representation of A. One may think of XBI .... ,Bs as a 
column which, for a p-dimensional representation, has 
p rows. The realization ofAxP is given by (2.2) and 

Ia-t" (a=I, ... ,N) (5.4) 

where the t" are p x P matrices. 

We now replace our Assumption 2 by the new locality 
requirement that the local version of the symmetry 
group A be a kinematical symmetry, i. e., we demand: 

Assumption 2': To every transformation45 

q, - exp[iW"(x)t"] <I> (5.5) 

with a differentiable set of functions wa(x) (a= 1, ... ,N) 
there corresponds in Hilbert space a unitary operator 
IJ such that 

(IJ <I»(x)=exp[iwa(x)t"]<I>. (5.6) 

From the realizations (2.2) and (5.4) it now follows 
that under a local transformation (5. 5) 

P" -P" +t"0/.LW", 

J/.LV - J/.LV + ta(x ",ovw· - xvo /.Lwa
), 

Ia -[exp(iwbkb»).c fc• 

(5.7a) 

(5.7b) 

(5.7c) 

In (5. 7c) the kb (b = 1, ... ,N) are the NXN matrices of 
the adjoint representation of A, 1. e. , 

W)ef=idlJef' (5.8) 

As was the case for local phase symmetry, we must en
large the algebra of observables to ensure that 
(5. 7a, b, c) represent a permutation of the observables. 
Somewhat surprisingly, all we have to do is to include in 
the algebra the already familiar Q/.L operators which, are 
now taken to satisfy the Lie relations 

[p",QJ _il"lg,,", [Q",Qv]=O, 

[Ia,Q",]=O. 

(5.9a) 

(5.9b) 

To see this, take w·(x) = c~ x'" (with constant c~) and set 

lJ=exp[-ilc~F~], (5.10) 

where the F~ (11. =0,1,2,3; a= 1, ... ,N) are dimension
less. Then, from (5. 7a) 

P +t"ca =IJP 1J-1 =p _ilca[P P ]+ .... 
J,I. J.I. JL JL v a' j.J, 

(5.11) 

If we put 

(5.12) 



                                                                                                                                    

2059 P. Roman and J.P. Leveille: Relativistic quantum mechanics 2059 

with QV obeying (5. 9a), then (5. 11) is satisfied [if (5.2) 
and (5.4) is taken into account]. From the algebra of 
P"" Q "" fa it now follows that, as before, Q '" can be 
realized as 

Q", --I-Ix"" 

Then, from (5. 7b), with wa=c~x'" we get 

J ",v + ta(x",c~ - xvc~) '= UJ ",vU-l 

(5.13) 

(5.14) 

=J",v-ilc~[F:, J",v]+'" =J",v-ilc~Ia[QP, J"vl+"', 

so that we must have 

(5.15) 

as in the Abelian case. Finally, with (5.10), (5.12), 
(5.1), and (5.8) we find 

ljl"lj-l=Ia-ilc! [F~, Ia]+ .. . 

=Ia_ilc~QP[Ib, Ia]+ .. . 

=Ia + ic~xP(kb)ac[C + ... = [exp(ic~ xPkb)]aJc, 

so that, for the special choice of w b
, Eq. (5. 7c) is also 

satisfied. In conclusion, we note that, in addition to 
Eqs. (5. 7a, b, c) we also have the transformation law 

(5.16) 

for the behavior of Q" under local gauge transformations. 

Since, for a general local A-transformation we can 
set 

'" 
wa(x) = 6 c[(n)M~x"']n (a=l, ... ,N), 

n =0 

it now follows (as in the Abelian case) that arbitrary 
local transformations are kinematical symmetry trans
formations of the operator algebra generated by 
{P"" J uv,!a, Q u'!}' This concludes the proof of our as
sertion that it is sufficient to enlarge the original set 
by the Qu ' Note that Q" is invariant under A [cf. (5.9b)] 
and otherwise it obeys the usual Lie relations. 

It may be interesting to point out that the factorization 
(5.12) of F~ is forced on us, because otherwise we would 
not have a closed Lie algebra. Indeed, from (5.14) we 
have 

[F:, J "J = - il-l(g:,xv - ~x )fa, 

and even if we now admitted the "additional" operators 
Q", realized by _["lxu' the rhs of this equation would 
belong to the enveloping algebra. The only solution of 
the problem46 is the factorization (5.12). 

On the other hand, since the first Casimir invariant 
of the global group A can be written as 

Eq. (5.12) may be solved to give 

Q '" =Bl-lIa~. (5.17) 

One may consider this as a definition of Q" in terms of 
fa and of the generators ~ of linear local symmetry 
transformations. From this viewpoint, the RG boosts 
are generated, in the case of a non-Abelian symmetry, 
by combining a global A-transformation with a specific 
(linear) local gauge transformation. 
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Because of (5. 9b), the kinematical group has the 
structure 

K=AX {SL(2,CjJ<ZI (T:<ZI (T~xTt)]). 

The Casimir invariants are those given by Eqs. 
(2. 19a, b, c) and the Bl , ••• ,Bs' 

(5.18) 

Since intrinsic development must be compatible not 
only with Poincari! transformations but also with the 
global A-transformations, development transformations 
are now characterized by 

P",-P"" Juv-J"v, la-la, Q"-[(Qv,P,,,Jpo,!a). 

Using the same arguments as in Sec. III, the most gen
eral form of the generator is again given47 by Eq. (3.1). 
From Assumptions 5 and 6 we then once aga.in obtain 
the form of S as specified by Eq. (3.2). The entire Lie 
algebra is now specified by Eqs. (3. 3a)-(~3. 3g) plus 
(5.1), (5.2), (5.9b) as well as the obvious relations 
[S, Ia] = O. In other words, the structure IJf the dynamical 
group is 

G=Axg5 =AX(Q 5<Z1 Tll-\ (5.19) 

The Casimir invariants are given by (3. 5a)-(3. 5d) to 
which we have to add the Bi (i = 1, '" ,s). 

ChOOSing the homogeneous space A x Q5/S0(3, l)J <ZI T4 Q 

with elements Ca, a, a) (where a stands for the param
eters of A) and making the identifi.cation (a, a, (i) - (g, u, x) 
(where gEA), we obtain the active representation of G 
as a group of endomorphisms of A(g)xE3 ,l(X)xEl(u) 
given by the transformations 

g- exp(iabkb)g, 

u- u + a, (5.20) 

On the total Hilbert spac'e H we again have the realiza
tions (3. 11) by differential operators, amended by Ia - t". 

VI. INTERACTING SYSTEMS 

In this section we shall follow closely the arguments 
presented in Sec. IV of Ref. 2 for obtaining a unique 
form of interactions. We concentrate on the non-Abelian 
symmetry, 

From the realizations of the generators on H we ob
tain the effect of a local gauge transformation 

q,(x;u) - exp[i(.t!a(x)t"] q,(x;u) (6.1) 

as being given by 

P u - P u + taa",wa, 

Q '" - Q u + utaa " wa, 

J uv - J ",v + t"(x",avwa - xva ",wa), 

S-S, 

Ia - [exp( iwbkb ) l.Jc. 

(6.2a) 

(6.2b) 

(6.2c) 

(6.2d) 

(6.2e) 

Equation (6. 2b) tells us that the event-space position 
operators Q"" and hence the associated particle position 
operators MWk of Sec. IV, are not invariant under local 
gauge tJl'ansformations. Since there is no reason why 
localiz'ation should depend on an arbitrary gauge, we 
stipulate 
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Assumption 7: Local gauge transformations commute 
with the Q". 

To satisfy the requirement that Q" - Q" under an 
arbitrary local transformation with a differentiable 
w'(x), we must obviously modify the realization (3.11) 
of the Q". We set 

(6.3) 

where the W: represent some vector fields. This modi
fication is suggested by the requirements that (a) when 
the "interaction" characterized by W~ is switched off, 
we recover (3. 11), (b) when considering Q" on the slice 
u=O, we r,ecover (2.11), (c) the modified Q" is still a 
scalar relative to the global group A. We now calculate, 
for an arbitrary local gauge transformation, 

(ljQ "U-1<f» (x;. u) = exp(itbwb) [( _Z-lX " + iuo,,) 

x exp( - itbWb) <f>(x; u)] 

- u(ljt" W~ U-1 <f» (x; u) = (-Z-lX .. + iuo" + utba "wb)<f>(x;u) 

- u(ljt" W~U-l<I» (x; u). 

Therefore, Q u. - <¥)" provided 

t"W~ - exp(- itbWb) t'W~ exp(itbwb) + t"o "w'. (6.4) 

In summary: The gauge-independence of localization 
can be achieved if an interaction with a set of vector 
fields W: (a = 1, ... ,N) is introduced, where these gauge 
fields transform under a local gauge transformation in 
the familiar manner48 as given by (6.4). 

In passing we note that. the modification of Q" does not 
affect the gauge behavior of P",J,,", S,I', so that the 
Eqs. (6.2) still hold except (6. 2b) which is replaced by 
Q .. - Qu ' 

In order to find the explicit form of the interaction, 
we use (6.3) and S-iou ' P u -i0u. to compute that 

[S, Q u.] = i(P u. - t"W':J. (6.5) 

By transforming with exp(iuS), this tells us that on the 
slice u = 0.:. [5; Q J = i(P u. - t"W~ ,. Since W: is a power 
series in Q", we easily find49 that 

- Z - 1 - - 1 - -- -
S = - - ~ + - P"t" wa + - t"Wa pll + N 2 2 II 2 II' , 

where N is an arbitrary scalar function of Q u.' This ex
pression can be trivially completed to the "square" of 
P" - t"W~ (modulo an additive scalar), and finally trans
forming with exp(- iuS) we obtain, on the slice Hu ' 

S =- '!:"(P - tawa )(Pu. - t"W") + V (6.6) 2" u a' 

where V is an arbitrary function of Q". 

Since in the (js theory S plays the role of a covariant 
relativistic Hamiltonian (relative to develo'pment in 
historical time), Eq. (6.6) describes a unique gauge 
invariant structure for interacting systems. 50 From (6. 5) 
we see that, in the presence of interactions, the momen
tum is no longer P" but rather 

(6.7) 

This is invariant under local gauge transformations, 
and so is 
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(6.8) 

The realization of (6. 6) on the function space replaces 
the wave equation (3.12) by one containing the familiar 
"covariant derivatives, " 

[- (io" - taW~)(io" - t"W:) - 2Z- 1 V - 2Z- 1io u] <f>(x;u) = O. 

(6.9) 

We can go one step further. Similarly, as we did in 
ref. 2 for the nonrelativistic system, we may also now 
decide to make the superselection rule connected with 
the incoherence of the slices H u an explicit stipulation. 
In other words, we can generalize Assumption 2' to 
become 

Assumption 8: To every transformation 

<f>(x; u) - exp[itawa(x, u)] <f>(x; u) (6.10) 

with a differentiable w·(x, u) there corresponds in the 
Hilbert space H a unitary operator U such that 

(lj<f>)(x;u)=exp[it"wa(x,u)]<I>(x;u). (6.11) 

Under these generalized, historical time dependent 
gauge transformations the formal behavior of 
P", Q", J .. v' Ia is the same as before. However, S is no 
longer invariant: from S -ia u it follows that 

(6.12) 

Therefore, under u-dependent local gauge transforma
tions Eq. (6.6) or (6.8) is inconsistent: The lhs trans
forms according to (6.12) but the rhs is unchanged. This 
can be remedied if we restrict the so far arbitrary V 
field to transform under a general local gauge trans
formation according to the law 

(6.13) 

We remark that the wave equation (6.9) can now be con
sidered as arising from the free wave equation (3.12) by 
replacing all derivatives with covariant derivatives: 

a,,"" a" +itaw~, 
all"" 0u- iV. 

(6.14) 

The wave equation (6.9) is invariant under the simulta
neous transformations 

<f> - exp[ - it"wa(x, u)]<f> , 

taw: - exp( - itbWb) t"W~ exp(itbwb) + t"o "wa, 

V - V + t"0uwa. 

(6. 15) 

Whereas vector gauge fields are familiar and in fact 
most desirable, it may be difficult to ascertain, at the 
present time, the meaning and significance of the scalar 
gauge field V. However, it is easy to get rid of Val
together, viz. by performing a gauge transformation 
with 

t"wa(x,u)=- J/I Vdu. 
o 

Then 

S-S-V:=S, 

and (6.8) becomes 

S' = - £ IT IT" 2 u 

(6.16) 

(6.17) 

(6.18) 
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Once we chose this particular gauge, we are no longer 
permitted to perform gauge transformations with a u
dependent wd • But in this special gauge, the remaining 
gauge transformations are an invariance property of 
the dynamics, in the sense that S - S. 

When the special gauge (6. 16) is taken, then, in view 
of (6. 15), the wave equation (6. 9) assumes the form 

[_ (id - tawa )(id I' - taWU) - 2r 1id u]<I>(X; u) "'" 0, (tl. 19) 
I' I' a 

where of course W· means the vector fields in the 
I' 

special gauge. Separation of variables is obtained by 
setting 

<I>(x; u) "'" 'i1(x) @(u) 

and we have 

@(u)"",exp(iMm2u) 

and 

(6.20) 

(6.21) 

(6.22) 

Here the separation constant m 2 appeared as the eigen
valueS1 of - 2Z-1id u "'" - 2r1S"", ll"llu, and it therefore rep
resents the squared mass in the presence of the interac
tion. Equation (6.22) must be looked upon as an eigen
value equation for m 2 with the boundary value condition 
that 'i1(x) be Poincarl!-normalizable. Thus; (6.22) will 
give rise to a mass spectrum. To actually perform the 
calculation, one ought to know W~. This can be done if 
one sets up an invariant Lagrangian formulation in
cluding the gauge fields and thus obtains field equations 
for the latter (coupled to 'i1). This problem [and the in
clusion of SL(2, C) spin] will be considered at a later 
time. 

VII. CHARGE SUPERSElECTION RULES 

As was discussed in Sec. V of Ref. 2, the gauge be
havior of the vector field gives rise to a charge super
selection rule for Galilean systems. A similar situation 
arises for c: s· 

Take a local A-transformation with the special phase 
wa(x) "'" c~xu and for ease of calculation, assume that the 
constants c~ are infinitesimal. Then, because of (6.4), 

W: - W~ + dabecexvW~ + c:. 

Denote that part52 of the corresponding unitary operator 
which acts on functionalsR of W:, by 

U "",exp[-ilc~K:]· (7.1) 

(Here I<~ is dimensionless). Then one must have 

(7.2) 

Set 

(7.3) 

and stipulate that 

(7.4) 

Since Qv and W~ commute and since W~ transforms under 
the adjoint representation for the global group, we have 

(7.5) 

Substituting (7.3) into (7.2) and using (7.4), (7.5) we see 
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that (7.2) is satisfied on the slice u "'" 0, because there, 
on account of (6.3), QV-_Z-1xv. Therefore, to accomo
date the gauge transformation of W~ at u = 0, we need 
only to adjoin the new observables L~, whose action on 
the functionals R of W~ is defined by (7.4). We can 
realize L ~ by setting 

L e_U-1 _ O_. 
v o~ 

For arbitrary slices u, L ~ is obtained by transforming 
this with exp(- iuS). 

Since the rhs of (7.4) is in the center of the algebra, 
we have a new superselection rule for the complete 
system generated by P ", Q u' J uv' S, W~. The superselec
tion rule corresponds to that of the "charge" associated 
with the gauge coupling. Indeed, using an explicit 
coupling constant y, we must replace W~ by yW~. Then 
(7.4) gives 

(7.6) 

so that53 the "supersymmetry" observable is y-l. 

It is Significant that, contrary to the Poincarll frame
work, the c: 5 theory automatically explains "charge 
superselection rules. " 
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A uniformly valid asymptotic expansion is obtained for the regular solution of a class of 
second-order linear differential equations with three transition points-a turning point and two regular 
singular points. The solution is found by matching three different solutions obtained using the Langer 
Transformation. The matching yields the eigenvalues and the eigenfunctions. 

I. INTRODUCTION 

We seek asymptotic solutions for large A to the 
differential equation 

:x (X + a)(b - x) :~) 

+( PIx) +Ax"g(X)(x+a)m+1(b_X)k+1)y=o (1) 
(x+a)(b-x) 

that are regular on the interval l- a, b], where a and b 
are positive numbers, pix) and g(x) are regular func
tions and g(x) > ° on [- a, b], and n, m, and k are integers 
such that n?-O, m?--2, andk?--2. Forn*O, Eq. (1) 
has three transition points-x = ° is a turning point and 
x = - a and x = b are regular singular points. 

The special case PIx) = 2(1- x2), g(x) = 1, a = b = 1, 
n = - m = - k = 1 describes stationary waves of small 
amplitude on the surface of a liquid sphere of unit radius 
whose center of mass is undergoing a constant accelera
tion. 1 Harper, Chang, and Grube2 obtained a second
order asymptotic solution to this special case by using 
the method of matched asymptotic expansions (e. g. , 
Chap. 4 of Ref. 3). The same technique was used by 
Jeffreys4 to treat a problem with two simple turning 
pOints. The solution was represented by five asymptotic 
expansions valid on the intervals [- 1, - 1 + 01 ], 

[- 1 + °1 , - O2], [- °2 , 03 ], [°3 ,1 - °4], and [1- °4, 1], 
where the OJ are small positive numbers. The five ex
pansions were then matched to determine the eigenvalues 
and the eigenfunctions. 

Nayfeh (Sec. 7.3.3 of Ref. 3) used a combination of 
the Langer transformation (e. g., Sec. 7.3.2 of Ref. 3) 
and the method of matched asymptotic expansions to 
obtain a uniformly valid asymptotic solution to a problem 
with two Simple turning points. Rather than use the 
procedure of Ref. 2 and represent the solution by five 
al;lymptotic expansions, Nayfeh3 represented the solution 
by only two expansions. Nayfeh5 used the method of 
multiple scales (e. g., Sec. 6.4.4 of Ref. 3) to analyze 
the case of two Simple turning points, while Nayfeh6 

used a combination of the Langer transformation and 
the method of matched asymptotic expansions to analyze 
a problem with two transition points-a turning point 
and a regular singular point of any order. 

Problems with multiple transition points were also 
treated by using the Olver transformation (e. g., Sec. 
7.3.2 of Ref. 3). The solution is represented by a single 
uniformly valid expansion by relating it to the solution 
of an equation which approximates the original equation. 
Using this approach, Olver, 7 Moriguchi, 8 and Pike9 
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treated problems with two turning pOints. Problems with 
several turning points were treated by Evgrafov and 
Fedoryuk,1O Hsieh and Sibuya, 11 Sibuya, 12 and Lynn and 
Keller 13 among others. 

In this paper, we determine an asymptotic solution to 
Eq. (1) by using a combination of the Langer transforma
tion and the method of matched asymptotic expansions, 
We prefer to use this technique rather than the Olver 
transformation because there exists no solution yet to 
the related equation. Thus, we represent the solution 
of the general problem by three expansions valid on the 
intervals [- a, - °2 ], [- a + °1 , b - °4], and [°3 , b]. Then, 
we match these expansions to determine the eigenvalues. 

Before carrying out the expansions, it is more con
venient to remove the first derivative in Eq. (1) by 
introducing the transformation 

y(x) = u(x)(x + a)"1/2(b _ X)"1/2. (2) 

The result is 

d
2
u (f(x) ) 

dx2 + (x + a)2(b _ X)2 + Aq(X) u = 0, (3) 

where 

fix) = Pix) + t{a + b)2, 
(4) 

q(x) = xng(x)(x + a)m (b _ X)k. 

II. AN EXPANSION VALID ON [-a, - c5 2 1 
To determine an expansion valid near the Singular 

transition point x = - a, we note that, as x - - a, Eq. (3) 
tends to 

~; +(_I)n Aq1(x+a)m+ (x:
1
a?)U=O' (5) 

where 

q1==a"g(-a)(b+a)k and r1=f(-a)(b+a)"2. (6) 

Hence, an asymptotic solution valid near x == - a can be 
obtained by relating this solution to the solution of the 
"related" equation 

~;~ + (- 1)"Azm + ;t) v=O. 

To relate the solutions of Eq. (3) to the solutions of 
Eq. (7), we introduce the transformation (e. g., Sec. 
7.3.9 of Ref. 3) 

z=cp(x), v ==u(x)[cp'(X))1/2, 

W1cp8=f [q(- ~)]1/2d~=G1(X) 
-a 

(7) 

(8) 

Copyright © 1974 American Institute of Physics 2063 
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in Eq. (3) and obtain 

~;~ + ( - l)"\zm + ~) v = F1(x)v, (9) 

where primes denote differentiation with respect to x and 

F - 2::L __ 1_ (/(X) + 3(/>,,2 _ 1/>"') (lOa) 
1- 1/>2 1/>,2 (x + a)2(b - X)2 41/>,2 21/>" 

j3 = (m + 2)/2. 

As x- -a, 

j3" l l/>a _ Wlq~/2(X + ala 

so that 

(lOb) 

and 

Fl = ol(x + atl]. 

Hence, a first-approximation to Eq. (9) is given by 
Eq. (7), whose general solution is 

v=zl/2[CIJv(\1/2~-lza)+ c~_v(\1/2rrlza)] for even n 

(11) 

and 

V= zl/2[1\lv(\1/2j3-1za) + cJ_v(\1/2W1ZS)] for odd n 
(12) 

where c1 and c2 are arbitrary constants and 

v=(1-4rJ1
/

2/(2+m). (13) 

In what follows, we restrict our analysis to the case 
r 1 .;; t so that v is real. 

In order that y be regular at x = - a, Eqs. (2), (8), 
(11), and (12) show that CY2=0. Hence, 

u1(x) = Cl[Gl(X)]1/2[q(X)]-1/4Jv[\1/2Gl(X)] [1 + 0(1)] 

aSA-OO (14) 

for even nand 

U1(x) = cJ G1(X))1/2[q( - x)]-1/41 JA 1/2G1(X)] [1 + 0(1)] 

as A- 00 (15) 

for odd n, where c 1 and c2 are arbitrary constants. 
These expansions, although valid at x = - a, they break 
down as x - 0 if n"* O. Thus, they are valid only on the 
interval [- a, - O2], An expansion valid near x = 0 is 
obtained in the next section. 

III. AN EXPANSION VALID ON [-a + 01,b-04 ] 

Asx-O, Eq. (3) tends to 

(16) 

where qo = ambkg(a). Therefore, an asymptotic solution 
to Eq. (3) valid near x=O can be obtained by relating it 
to the solutions of 

d 2 v 
-2 +AZ"V=O. 
dz 

To do this, we introduce the transformation 
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Z=I/>(x), V=U(x) [I/>'(X)]1/2, 

~2 1/>(,...2)/2=[ [q(~)]1/2d~=Go(x) 
n+ 0 

(18) 

in Eq. (3) and obtain 

d
2
v + A " dz2 zv=Fov, (19) 

where 

(20) 

Asx-O, I/>=O(x), 1/>'=0(1), and Fo=O(l). Since A 
is large, v is given approximately by Eq. (17) whose 
general solution is 

V=Zl/2[C J (2Al/2 z(n+2)/2) + c~ (2Al/2 Z(n+2)/2)] 
3" n + 2 -" n + 2 

(21a) 

for all Z if n is even and for Z '" 0 if n is odd, and 

= tl/2 [_ r (2Al/2 t("+2l/2) _ CI (2Al/2 t(n+2)/2)] 
v" c4:" -~ n + 2 " 3" n + 2 s 

(21b) 

for Z = - ~ < 0 if n is odd. Here, (;3 and (;4 are arbitrary 
constants and 

(21c) 

Note that the solution (21b) is an analytic continuation of 
the solution (21a). To see this, we express J" and J_" 
in terms of their power series expansions, use Eq. 
(2lc) , let T=A1

/
2/(n+2), and rewrite Eq. (21a) as 

(22a) 

which is an entire function of z, and hence it is defined 
over the whole complex Z plane. Thus, we let Z = - ~ 

in Eq. (22a), use the fact that n is an odd integer, and 
obtain 

_ .. rm ~m(n+2) 
V = - C T" ~ ~ -----,--"------: 

3 m=O m! rem + Jl + 1) 
(22b) 

which is simply the power series representation of Eq. 
(21b). Therefore, 

Uo = [Go(X)]1/2[q(X)]-1/4 {c
3
J JA 1/2Go(X)] 

C4J_JA1/2Go(X)]} [1 + 0(1)] as A - 00. 

for all x if n is even and for x> 0 if n is odd, and 

Uo = [Go( - X)]1/2[q( - X)]-1/4 {CJ_JAl/2G
O

( - x)] 

-ci,,[Al
/

2Go(-x)]}[l +0(1)] as A-OO 

(23a) 

(23b) 

for x < 0 if n is odd. Although this expansion is valid at 
x=O, it breaks down as x- - a or b. Thus, it is valid 
only on the interval [- a + 01 , b - 04], An expansion valid 
near x = b is obtained in the next section. 
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IV. AN EXPANSION VALID ON [/)3, b] 

As x- b, Eq. (3) tends to 

(24) 

where 

q2=b ng(b)(a+b)m and r 2=f(b)(a+btz• (25) 

Hence, an asymptotic solution for Eq. (3) valid near 
x= b can be obtained by relating it to the solutions of 

~+(AZk+4-)V=O. (26) 
dz z 

This is accomplished by using the transformation 

z= CP(x), v==u(x) [cp'(X)]I/Z, (27) 

{3-1cpa = t [qWll /2 d~ = Gz(x), 
" 

where {3 = (2 + k)/2. 

Introducing the transformation (27) into Eq. (3), we 
obtain 

(28) 

where 

_ ~ __ 1_ ( f(x) + 3cpn
2 _.!1t:..) 

F2 - cpz cp,2 (x + a)2(b _ X)2 4cp,2 2cp" (29) 

Asx-b, Cp=O[(b-x)], Cp'=O(l), and Fz=O[(b-xrl]. 
Hence, a first approximation to v is given by Eq. (26) 
whose general solution is 

v = zl/Z[cseT,(A 1/2tJ-IZ8) + ctl_/:\ 1/2tJ-lz a)], (30) 

where (;s and (;6 are arbitrary constants and 

y = (1 - 4r2)1/2/(2 + k). 

In what follows, we restrict our analysis to the case 
r 2 ,,; t so that y is real. 

(31) 

In order that y be regular at x = b, Eqs. (2), (3), and 
(30) show that (;6 = O. Hence, 

uz(x) = CS[G2(X»)1/2[q(X)]-1/4Jy[Al/2GZ(X)] [1 + 0(1)] 

as :\ - 00 (32) 

Although this expansion is valid at x = b, it breaks down 
as x - O. In order to obtain a uniformly valid expansion 
on the interval [- a, b], we match the three expansions 
obtained in this and the preceding two sections. 

V. MATCHING WHEN n IS ODD 

Since ul (x) and uo(x) are valid over on the interval 
- a < - a + 61 -'fx ~ - 62 < 0, they have a large overlapping 
region which allows their matching. To match these 
expansions, we fix x in this overlap interval and expand 
both U o as given by Eq. (23b) and u l for large A. The 
result is 

ul = C 1 (21Ttl/2[ :\q( - x) ]-1/4 exp[:\ I/ZG1 (x)] [1 + 0(1)], (33) 

Uo = (21Ttl/2[Aq( - x) J-l /4{(C4 - c3 ) exp[:\ 1/2Go(X)] 

+ [c4 exp(i1TJ.L) - c3 exp( - i1TJ.L)] (34) 

x exp( - M1T) exp[ - :\1/2Co(X)J} [1 + o( 1)], 
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where 

(;o(x) = t [q(- ~)y/2d~:::: Go(- x). (35) 

" The expansions (33) and (34) are two WKBJ approxima~ 
tions of u(x) on the same interval - a + 61 ,,; X .E; - 62 , 

Hence, they must be identical. This is so if, and only if, 

C4=C3 , (36) 

2C3 SinJ.L1T=cl exp(:\1/2 f~ [q(_X)]1/2dX). 

To match Uo and u2 , we note that they overlap on the 
interval [63 , b - 04 ], Thus, we fix x in this overlap inter
val and expand both Uo as given by Eq. (23a) and u2 for 
large:\. The result is 

Uo = 2c3(2/1Ti /2[:\q(X)]-1/4 cost ~1TJ.L) COS[A1/ 2GO(X) - tw]. 
x[1+0(1)J, (37) 

u2 = Cs(2/1T)1/2[:\q(X)]-1/4 cos[A 1/2G2(X) - t?T - ~1TY] 

X[1+0(1)]. (38) 

Since Eqs. (37) and (38) represent u over the same 
interval [63 , b - 64 ], they must be identical. 

If we let 

A =:\ 1/2( Go + G2) - ~(1 + Y)1T = r [q(x)JI/2dx - ~(1 + Y)1T, 
o 

(39) 

then 

Al/2GO - tw=A - (Al / 2G2 - tw - W1T)= A - O!. (40) 

Equating Eqs. (37) and (38), using Eqs. (39) and (40), 
and equating the coefficients of sinO! and coso! to zero, 
we obtain 

sinA=O or A=j1T, j=1,2,3,"', 

Cs = 2cg cos~J.L COSj1T. 

(41) 

(42) 

Combining Eqs. (39) and (41), we find that the eigen
values are 

A=1T2(j+~+w)/f: [q(X)Jl/2dxt (43) 

For the special case, a=b=I, p(x)=2(1-r), g(x)=l, 
n = - m = - k = 1, Eq. (43) reduces to the first-order 
solution of Ref. 2. We emphasize again that we rep
resented the solution by only three expansions which 
were matched, whereas the solution was represented by 
five expansions in Ref. 2. 

VI. MATCHING WHEN n IS EVEN 

To match ul as given by Eq. (14) with uo, we fix x in 
the interval [- a + 61 , - 62 J, expand U l and U o for large :\, 
equate the results, and obtain 

C1 COS(A1/ 2Gl - tw - t7TV) = c3 COStA 1/2Go - t7T - t1T/.1.) 

+ c4 COS(:\1/2GO - trr + ~7T J.L) 

(44) 

To match Uo and u2 , we fix x in the interval [63 , b - 64 J, 
expand Uo and u2 for large A, equate the results, and 
obtain 

c 3 COS(~l/ZGO - t?T - t1TJ.L) + c4 COS(A1/ZGo - trr + i1TJ.L) 

:::: C s COStA 1/ZG2 - tll - i1TY). (45) 
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If we let 

~l ==Xl/2(G1 - Go) + t1T(J..L - v), 

then 

Xl/2GO - trr - t1TJ..L == a - ~u 

Xl/2GO - t1T + t1TJ..L == a- (~l -1TJ..L), 

where 

(46) 

(47) 

(48) 

(49) 

Substituting Eqs. (46)-(49) into Eq. (44) and equating 
the coefficients of cos a and sin a on both sides, we 
obtain 

C 3 COS~l + c4 COS(~l -1TJ..Lh= Cu 

c3 sin~l + c4sin(~1 -1TJ..L)==0. 

Similarly, we obtain from Eq. (45) the following 
relationships: 

c3 cos~ + c4 COS(~2 + J..L1T) == cs, 

c3 sin~2 + c4sin(~2 + J..L1T) == 0, 

where 

~==Xl/2(GO + G2 ) - t1T - t1T(J..L +')1). 

In order that Eqs. (51) and (53) have a nontrivial 
solution, 

sin~l sin(~ + J..L1T) - sin~2 sin(~l - J..L1T) == 0, 

which gives 

sin(~l +~) ==0. 

Hence, 

~1+~2==j1T, j==1,2,3,"" 

(50) 

( 51) 

(52) 

(53) 

(54) 

(55) 

Substituting for ~l and ~ from Eqs. (46) and (54) into 
Eq. (55), then substituting for G1 and G2 from Eqs. (8) 
and (27) into the resulting expression, and solving for X, 
we obtain . 

X == 1T2( [j + t(1 + y + v)]/l: [q(x) ]1/2dx r. (56) 
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Once X is known, we can solve Eq. (53) to determine c
4 

as a function of C3, and then Eqs. (50) and (52) to deter
mine c1 and Cs in terms of c3 • 

VII. SUMMARY 

A general procedure is presented for the determina
tion of approximate solutions of linear differential equa
tions with multiple transition points. The procedure is 
a combination of the Langer transformation and the 
method of matched asymptotic expansions. It is applied 
to a class of second-order differential equations with 
three transition points-a turning point of any order and 
two regular singular points. 

The solution is represented by three different regular 
asymptotic expansions. Each expansion is valid on an 
open interval containing one of the transition points but 
excluding the other two. These expansions were then 
matched to relate the arbitrary constants and determine 
the eigenvalues. Adding these expansions and subtracting 
their common parts, one can determine a so-called 
composite expansion, which is a single uniformly valid 
expansion. 
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A solution is offered for this problem: Describe the observables of classical electrodynamics with 
connections on fiber bundles without using nonobservable entities, either in computations or in 
conceptual development. The solution employs a connection on the affine frame bundle of space-time. 
Comparisons are made with other geometric interpretations of electrodynamics. 

I NTRODUCTI ON 

Many of the descriptions of claSSical electrodynamics 
by connections on fiber bundles are closely related and 
can be derived one from the other. The Kaluza-Klein 
theory is representative of one such group of theo-
ries, 1,2 and was the first historically in this group. The 
purpose of this paper is to present a geometrical de
scription of classical electrodynamics which employs 
only (classical) observables, both computationally and 
conceptually. The space-time metric and electromag
netic field define a connection on the affine frame bundle 
of space-time without recourse to a gauge-dependent 
fiber metriC, which is employed by the Kaluza-Klein
type theories given in the references. If desired, varia
tional functionals can be expressed as tensors con
tracted with respect to a (different) gauge -dependent 
fiber metric which is defined in Sec. II. B. 2. 

Section I discusses mathematical foundations; Sec. II 
gives the physical interpretation and compares this 
theory with several other geometrical theories of elec
trodynamics, including the semiclassical Yang-Mills
Utiyama3 ,4,5 description. 

I. MATHEMATICAL FOUNDATIONS 

A. Fiber bundles 

Let M be a T2 C~ n-manifold. Then we can construct: 
L(M) = linear frame bundle [principal bundle with group 
Gl(n;R) = homogeneous linear group]; T(M) = linear 
tangent bundle; A(M) = affine frame bundle [principal 
bundle with group A(n; R) = inhomogeneous linear group]; 
AT(M) = total affine tangent bundle [an (n + I)-vector 
bundle with principal bundle A(M)]. There are natural 
inclusions L(M) cA(M), T(M) CAT(M), and GI(n;R) 
cA(n;R) [induced by L(M)CA(M)]. The orbits in R"+1 
ind\lced by the action of A(n; R) are disjoint hypersur
faces which fill R"+1. Parameterizing the family of orbits 
in a way that respects the addition in R"+1, we can con
struct associated fiber bundles AcrT(M), (JER, with prin
cipal bundle A(M) such that: 

AT(M) = U A"T(M), 
"ER 

A"T(M) +ATT(M) =A" .. T(M). 

Each A"T(M) is a fiber bundle whose fiber is a flat affine 
manifold of dimension n; since they all have the same 
principal bundle, all A"T(M) are bundle-isomorphic. The 
inclusion L(M) CA(M) defines a vector bundle structure 
on A"T(M); this structure will not be parallel when the 
connections are introduced, but it does give an explicit 
vector-bundle isomorphism AaT(M) ",ATT(M). 
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B. Connections 

Let {w}= set of all C~ connection I-forms on A(M), 
{w}= set of all C~ connection I-forms on L(M), {K} 
=set of all Coo (1,1) linear tensor fields on M. 
There is a natural one-to-one correspondence 6

: 

{W}",{w}X{K}. 

The curvature form n of a connection form w defines an 
affine curvature tensor Riikl on M: 

"Ri,Jkl = r R_i i_kl_--!_K_i_I'_'k_-O_K_I_k,_'/] 

Lo ... o 

where Rijkl = curvature tensor on M of w, and where ";" 
denotes covariant differentiation (with respect to w, 
since K is a linear tensor). All indices run from ° to n, 
but for unhatted indices (which indicate linear tensors), 
the last index value indicates a zero coeffiCient. 

Given W, we can define affine geodesics. 

" Notation: for U E Tx(M), it EAaT x(M) denotes the corre-
sponding element under the Gl(n; R)-bundle isomorphism 
T(M) =AoT(M) ",A"T(M), a E R. In coordInates, ~ 
= (uG

, ••• ,u"-t, a). 

Definition: A a-geodesic, a E R, is a Coo curve in M 
such that 

where 

u = tangent vector to the curve. 

V = covariant differentiation with respect to w. 
In local coordinates, this is: 

UiUi,j +UjUkrjk +auiKij = 0, 

where r;k is a Christoffel symbol for the connection 
form w. For a=O, these are the geodesics of the linear 
connectionw. Fora, ,(ER, a, '(;CO, a-geodesics differ 
from 7-geodesics only by a nonzero scaling factor of the 
path parameter. (If we own a metric and restrict u by 
u2 = ± 1, then a-geodesics are in general distinct from 
7-geodesocs, a;c 7.) 

C. Metric generalized aff;,ne connections 

Given a manifold M with metric tensor g, a metric 
generali~ed affine connection on M is one such that: 

(i) The corresponding linear connection, w, is the 
Levi-Civita connec.tion of g. 

Copyright © 1974 A.merican Institute of Physics 2067 
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(ii) The corresponding (1, 1) tensor field K is subject 
to: U· (Vu u) = 0, where u = tangent vector field along any 
O'-geodesic, a E R. 

Condition (i) says that parallel translation of linear vec
tors and tensors preserves inner products. Condition 
(ii) is equivalent to requiring the tangent vector field 
along a a-geodesic to be of constant length, which is 
equivalent to requiring K to be antisymmetric as a (0,2) 
tensor field. 

Remarks: (1) A linear metric tensor field g and a 
linear antisymmetric (0,2) tensor field K uniquely 
determine a metric generalized affine connection in the 
sense defined here. 

(2) The metric g is a nondegenerate bilinear form on 
the tangent spaces over M, but it is degenerate as a 
bilinear form on the total affine tangent fibers over M. 

D .. The Jacobi equation for a-geodesics of a metric 
connection 

Letf:[O,1j-Mbe a a-geodesic, aER; 

u = tangent vector field along f; 

X = a variational vector field of a-geodesics along f 
(X is a linear vector field); 

. -
X="Vu X . 

Then X satisfies 

( ;::'2 v)i_Ri i"'" Ki uf>' Ki X·, 
- v u ·'\" - ik'U A"U +a ';kA"U +a , 

Proof: W.rite out the equation in local coordinates, and 
use the a-geodesic equation to derive the result for a 
geodesic variation which gives rise to X. If K!II;kJ = 0 
(antisymmetric part = 0), then the Jacobi equation can 
be written in the form 

...., ._ a • 

-('V~X)i=R,~/ ,XkUiU' +aKi,X'. 

From the Jacobi equation, we can obtain a geometric 
interpretation of the affine Ricci curvature as the aver
age second-order convergence of a-geodesics around f. 

II. DESCRIPTION AND INTERPRETATION OF 
ELECTRODYNAMICS IN GENERAL RELATIVITY 
IN TERMS OF GENEBALIZED AFFINE CONNECTIONS 

Convention: gii -( +, -, -, -), M = T2 CC 4-manifold. 

A. The motion of charge,d matter 
1. An isolated charged particle 

For a space-time M with metric g/j and electromag
netic field KiJ, construct t.he metric generalized affine 
connection determined by g and K. ConSider an isolated 
charged particle in the space-time, where 

m = particle mass, 

e = particle charge, 

u = unit 4 -velocity (time like : u2 = + 1). 

Define the "affine momentum veetor" of the particle by: 
e 

v=(~). 

In local coordinates on the affine ta,ngent bundle, 

v =(muO, mu\ mu2
, mu3

, e). 
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The equation of particle motion is 

Vuv=O, 

that is, ui(mui),j +uimuk r;k +eKi iui =0, that is, the 
particle trajectory is a a-geodesic, where a=e/m. 

2. A perfect charged fluid 

Construct the metric generalized affine connection 
determined by g and K as above. Consider a perfect 
charged fluid described by: 

N = particle density function, 

p = hydrostatic pressure, 

m = particle mass, 

e = particle charge, 

u = mean 4 -velocity, u2 = + 1. 

Define the affine energy-momentum tensor to be 

pli =NViui +p(uIUi -ij), 

where v = (fifu) as before. Note that g4i = 0, j = 0, 1, 2, 
3, 4. The flux density of i-momeptum through the hyper
surface {Xi = const} is given by pH. This has the stan
dard meaning for i, j=O, 1, 2, 3. For f=4, we have 
p4i = charge flux den~ty through the hypersurface xi 
= const. For j = 4, pi4 is identically zero. 

The fluid dynamic equations are: 

(i) particle conservation: (Nui);i = 0; 

(ii) affine momentum conservation: pii .. = O. 
.J 

Applying (i) to (ii), and writing (ii) in local coordinates, 
we have 

Nui(mu i) ,+Nmuiukri +NeKI ui 
,J Jk j 

3. Tidal forces 

+ (p(uiui - glJ»);J = 0, 

i=o, 1, 2, 3, 

Perform an Einstein elevator experiment with six 
identical particles of charge-to-mass ratio a=e/m. If 
the particles are placed symmetrically along three 
orthogonal spacelike directions, then their average 
second-order convergence is 

(V2 X )1 R- q,j, R j' J' 
- u (I) = J'uu = jluu -a ,u, 

where Jz=K'm;m, and where u=center-of-mass 4-
velOCity. 

4. Generalizations 

We can generalize concerning when vectors and ten
Sors are linear and when they are affine. Space -time 
itself is described by linear vectors and tensors, while 
charged matter is described by affine tensors, and 
electromagnetic fields relate the two. 

Examples: 

(a) Charged particle trajectory: 

Vuv=O. 
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Here v describes the particle and u describes the 
space-time path. 

(b) pli is the flux density of i-momentum through the 
xi -surface element. 

(c) Particle conservation (NuJ);i =0 involves the flux 
of a scalar quantity through a space -time boundary. 

(d) Affine Ricci curvature describes average gravita
tional tidal forces with its purely linear part, and elec
tromagnetic tidal forces with its partly-affine 
components. 

B. The field equations 

1. The standard field equations 

The field equations are those of standard general 
relativity, when all tensors are interpreted as linear 
tensors. The equations are: 

(i) - eii +2 pii =0, 

(ii) dK=O (Le.,K[ij;mJ=O), 

where pii is the affine energy-momentum tensor for 
matter, and does not include electromagnetic stress 
energy. That is, 

<'. ~Pii ~~ 
P ') - . 

- 0 ' 

Ji 0 

where p/i is the linear momentum tensor for matter, 
and Ji is the electriC current. The remaining term is 

o 

° 
o 

When dK = 0, then eii;i = ° identically: 

e 1i .. =(Rii_l.giiR) .. _2Ki K Ob • +2Ki.Kim. =0 
d 2 ,1 a ,b 1 ,m , 

i=o, 1, 2, 3, 

eli -2Kim =0 A 4 
;i- ;"';i-' i= . 

This is a generalization of the contracted second Bianchi 
identity for metric linear connections. 

For metric generalized affine connections, the 
equation 

R[ililkll =0 (antisymmetrize i, k, Z) 

is equivalent to 

Rlililkll =0 and Klkl;il =0. 

Although dK = 0 is not an identity of the theory and must 
be postulated as a field equation, it is similar in form 
to an extension of the first Bianchi identity for metric 
linear connections. Magnetic charge cannot be ruled out 
in principle (as in the rest of claSSical physics), but 
there is no room for it to enter with the geometric signi
ficance of electric charge into the affine momentum of 
charged matter or into the Ricci curvature. This point 
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is discussed further in the comparisons with other 
theories. 

This concludes the theory except for a separate con
struction of variational functionals USing a gauge -de pen -
dent fiber metric that respects the affine structure, but 
ignores the linear structure of the a-affine tangent 
fibers. 

2. The field equations from a variational principle 

The metric gij on the linear tangent spaces of M can 
be extended to the affine tangent spaces by ignoring the 
affinity of the vectors: 

gj4=g4i=0 (i=0, ..• ,4). 
1 

By moving the zero vector of g to - a..4, for some linear 
vector field A on M, a bilinear form g can be defined on 
the total affine tangent spaces of M: 

a T 

g(v,w)=g(v -aA,w -rA)=(v i -aAi)gij(wj - rAi), 

that is, g is a bilinear form on each alaffine tangent 
fiber whose zero has been moved to aA. The gauge
invariant metric structure of the a-affine tangent fibers 
is that of a flat four-dimensional Lorentz manifold with
out a linear structure (unless a=O). 

The condition Vg=O does not generally admit single
valued solutions for A: 

AI,j -Am r/i =Kii • 

However, Vg'jlj;kl = 0 is for A equivalent to 

dA =HAj,i -Ai) =K/j 

which has solutions (for dK = 0) and is physically useful. 
This condition will be imposed on it, but the absence of 
a meaningful four-dimensional interpretation of the con
dition leaves the relation between A and K in an unsatis
factory state. By considering quantum mechanical com
plex phase, the Yang-Mills-Utiyama approach gives 
a satisfactory interpretation of dA =K as the definition 
of K as a curvature. 

it is a degenerate form on the total affine fibers; in 
order to ~et fat;liliar results for lineaE. vectors (a = 0), 
define 'iti by: gi4=_Ai (i=O, .• • 3), g>14=A .A. 

The basic variational functionals of electrodynamics 
can be expressed using g: 

(a) Sourceless field equations, R = gii R'1i = R + A . J: 

ti J Rv'Tlf~x=O. 
a 

(b) Action of a charged particle, tV = (mu) : 

if(w, u) = (mu i - eA i) gij ui . 

(c) Field equations for a collisionless charged fluid 
come from variation of: R +2Ng'(w,u). 

C. Comparisons with other theories 

1. The Kaluza-Klein theory interprets the observ
abIes of classical electrodynamics with a connection on 
the tangent bundle of a 5-manifold with a cylindrical 
gauge-dependent metric. The Maxwell equation dK = 0 
results from the cylindrical restriction on the 5 -geome
try, which is itself of dubious significance. The other 
Maxwell equation and the Lorentz force equation arise 
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from a variational principle, and the Lorentz force can 
also be derived from parallel translation of the 5-mo
mentun of a charged particle. Gauge transformations 
arise from 5-dimensional coordinate transformations. 

The Einstein-Mayer variant of the Kaluza-Klein 
theory employs a 5-vector bundle over a 4-manifold 
with a gauge-dependent fiber metric. The equation dK 
= 0 must be separately postulated as a field equation; 
the resulting theory is basically the same as the 
Kaluza-Klein theory. 

2. The interpretation of electrodynamics presented 
in this paper is a solution to this problem: "Describe 
the observables of classical electrodynamics with con
nections on fiber bundles without using nonobservable 
entities, either in computations or in conceptual devel
opment." The content of this theory can be boiled down 
to: The parallel-translation law for classical PhYSics 
preserves the flat four-dimensional Lorentzian structure 
of the (a-affine) tangent fibers, but not generally their 
linear structure. The results are Similar to those of the 
Kaluza-Klein theory: The Lorentz force follows from 
parallel translation of the affine momentum of charged 
matter; Ricci curvature describes average tidal forces 
on charged matter. dK = 0 must be postulated as a sepa
rate field equation; however, electric charge-mass ratio 
has been interpreted as the relative strength of curva
ture rotations and affine curvature translations of affine 
momentum, and there is no room for an analogous 
geometrical role to be played by magnetic charge. 

A gauge-dependent metric can be introduced to ex
press variational functions; however, the relation dA =K 
between g and K is not well-justified conceptually. The 
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theory can stand without g if it is satisfactory to write 
down ad hoc variational functionals. 

3. The Yang-Mills-Utiyama approach solves the 
following problem: "Describe semiclassical electro
dynamics with connections on fiber bundles using quan
tum mechanical complex waves and 4-vector potential." 
Introducing a connection on a U(l)-bundle, dA=K de
fines K as the curvature, and dK = 0 is the Bianchi iden
tHy. The other Maxwell equation and the Lorentz force 
follow from a variational principle. Changing the coor
dinate splitting of the U(l)-bundle gives rise to gauge 
changes. The methods of this theory are applicable to 
a class of gauge-invariant field theories with internal 
symmetry algebras. In particular, the description of 
compound states by tensor products yields a plausible 
explanation of charge quantization. 
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In this paper we give a first application of a general method whose mathematical aspects will be 
fully developed in a forthcoming article. We are concerned with strongly singular perturbative series. 
Here we shall restrict ourselves to the most general two-body repulsive singular potential for which a 
regularization exists. Various extensions of this case are discussed in the conclusion. We show that, 
knowing only a finite number of regularized Born terms, it is possible to construct an upper bound 
to the exact phase shifts and that this upper bound is the best possible for the given regularization. 
The method uses the construction of the [NINJ Pade approximation indifferently on the regularized 
partial waves of the K or T matrix and exploits the fact that the approximate corresponding phase 
shifts have an absolute minimum as a function of the regularization parameter (cutoff). Three 
numerical examples are provided which show, even for very large phase shifts, an excellent 
convergence. 

INTRODUCTION 

One is often faced with a perturbative expansion in 
some parameter A, whose terms are given by diverging 
quantities, for instance diverging multiple integrals. It 
is therefore natural to regularize those quantities by in
troducing some cutoff parameter E, and therefore con
sider the formal regularized perturbative expansion 

T,(A) =AT~11 +A2T~2) + ... +AnT~n) + •. , 

with the condition 

E- +0, T: n1 _ 00. 

(1) 

(2) 

The basic problem is how to obtain meaningful approxi
mations to the true value when one has at disposal only 
the knowledge of ajinite number of regularized pertur
bative terms, 

In principle, one has to sum the complete series for 
fixed E, and then send the cutoff to its limit zero, But 
practically this procedure is, in realistic cases, impos
sible to do. We propose a different approach, which is 
based on the following idea: We replace the regularized 
perturbative expansion stopped at order 2N by its [N/ N] 
diagonal Pade approximation (PA),1-4 and look for ex
tremal values of the PAin the cutoff parameter Eo We 
expect that these values will tend, when N - 00, to the 
exact solution. The mathematical proof of such property 
will be given only for a specific case, namely, for the 
perturbative expansion of the mean value of the resolvent 
of an unbounded self-adjoint Hilbert space linear opera
tQr (Ref. 5), Such philosophy and the proof of its useful
ness has been already given for a special class of regu-
1arized series: the so-called Stieltjes series with infinite 
moments (Ref 6) with a phYSical application to the scat
tering length of Singular potentials (Ref. 7). 

In Ref. 5, we generalize and extend the method to a 
more general class of series with infinite moments. In 
this work, we give an idea of this generalization re
stricting ourselves to a more specific physical problem: 
the regularized Born series produced by a Singular two
body positive potential, at an arbitrary positive energy 
and angular momentum. The physical interest of this 
problem is two fold: 

(1) On one hand, its similarities with nonrenormali-
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zable field theory perturbative expansions can suggest 
methods to treat the trouble of this kind of series. In 
this respect, we observe that the PA method being en
tirelyalgebraic, can always be applied, at least formal
ly, to any regularized series. 

(2) It provides a very efficient and systematic way of 
computing the phase shifts of potentials as singular as 
one likes. Although our proof in the scattering region 
applies only to positive potentials, numerical experi
ences reported in Sec. 5 show that the convergence is 
also very rapidly achieved for changing sign singular 
potentials. 

In this paper, we show that the apprOximated regular
ized phase shifts, computed from the [N/Nl PA on the 
Tor K matrix, at a given energy, angular momentum, 
and coupling constant, enjoy an extremal property in the 
cutoff: They have an absolute minimum in the cutoff 
which, when N- 00, tends towards the true physical 
phase shift. Furthermore, the sequence of these mini
mums provides a set of monotonic decreasing upper 
bounds to the physical phase shift. 

In our demonstration, we have not explicitly made use 
of the variational Lippman-Schwinger principle for the 
phase shifts; however, it would be possible to deduce all 
our results from this prinCiple, taking into account that 
the [N/N] PA on the K or T matrix is the solution of this 
principle, when one chooses the perturbative ansatz (the 
so-called Cini-Fubini ansatz), to use this principle 
(Ref. 8). 

In Sec. 1, the reader will find the precise class of 
singular potential for which the complete proof is given. 

In Sec, 2, we give the notations and equations for the 
T and K matrices for completeness. 

In Sec. 3, we show a remarkable property of monotony 
of the approximate phase shifts of the P A on the K or T 
matrices. 

In Sec. 4, we demonstrate the extremal properties in 
the cutoff parameter of the approximate phase shifts 
built on the PA on the K or T matrices and the conver
gence of these extremal values towards the exact result, 

In Sec, 5, we discuss various numerical examples 
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and show the extreme rapidity of convergence even for 
very large phase shifts (typically 300 0

). 

In the conclusion, we come back on the general as
pects of the method and discuss various generalizations. 

1. THE CLASS OF POTENTIALS 

Although our method applies to very general poten
tials, we shall restrict ourselves, in this paper to a 
class for which complete proofs can be derived without 
much effort, 

In the scattering region we shall consider spherically 
symmetric potentials V singular in the origin restricted 
in the following ways (for the definition of regular and 
singular potentials, see Ref, 9): 

(1) V> 0; (10 1) 

(2) such that a unitary S matrix exists for a given an
gular momentum and a given energy; 

(3) such that a regularized version v(e) exists with 
the properties: 

(a) y< e) is a regular potential 

(b) when E
1

>E
2

, O""V('l) ""v(e2)' 

(c) when V(') - V, E_ 0 in the weak sense, 

then li~e)(E)_ Iiz(E), E_ 0, 

(1.2) 

(1.3) 

(1.4) 

where 1i~')(E) and 0z(E) are the scattering phase shifts 
relative to V(') and V, at energy E and angular momen
tum l. 

Such potentials which fulfill all these conditions have 
been extensively analyzed in the literature (see Refo 9). 

Among the possible regularizations fulfilling condi
tions (3b) we can use the so-called H() regularization" 

y< e) (r) = ()(r -E)V(r). (1. 5) 

2. THE K AND TMATRICES AND THEIR BORN SERIES 

We consider a two-body Hamiltonian 

H=Ho+AV (A>O). (2.1) 

By going into partial waves, it is convenient to introduce 
the scalar product 

(Cf\ I CP2) = 10 ~ cpt(r)CP2(r) dr, (2.2) 

The T matrix is given by 

exp[iliz(k, A)] sinliz(k, A) = Tz(k, A) = - k(cp z(k) I AV I <J!;(k, A», 

(2.3) 

with k= IE, where E is the energy and I cP z(k» is the 
spherical free wave of momentum k, 

(2.4) 

and I <J!;(k, A» is the outgoing spherical wave, solution of 

IlJ!j(k, A» = I cP ,(k» + AC;(k)V 1 <J!;(k, A» (2.5) 

and 
(rl C;(k) 1 r') == - krr'jz(kr()h;(kr» 

with 
= (r 1 Cf(k) 1 r') - i krr'jz(kr)jz(kr') 
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(2.6) 

(2.7) 

(2,8) 

Therefore, we can write 

C;(k) = Cf(k) - ik 1 cP z(k»(cp z(k) I. (2.9) 

From which we deduce by a standard argument the re
lation between the T and K matrices: 

Kz(k, A) = Tz(k, A)/[l + iT,(k, A)], 

where Kz(k, A) is defined by 

K,(k, A) = - k(cp l(k) 1 AV I <J!f(k, A»:::: tglil(k, A) 

and I <J!f(k, A» is solution of the equation 

(2.10) 

(2,11) 

(2.12) 

All these equations are valid as well as for a regular 
potential as for a singular one fulfilling our previous 
statement. 

In the case in which V> 0, we can rewrite equation 
(2.11) and (2.12) in the following way: 

K,(k, A):::: - kA(cp ,(k) 1 N N I <J!f(k, A» (2.13) 

and 

NI<J!i(k, A» = N 1 cpz(k» + AN Cf(k)N N 1 <J!f(k, A» (2.14) 

and deduce 

K,(k, A):::: - kA(CPI(k) 1 N[1 - AN Cf(k)N]-lN 1 'P z(k». 

(2.15) 

Therefore, Kz(k, A) appears as the mean value in the 
state N I CP, (k» of the resolvent of a symmetric operator 
N Gf(k)v'V. When V is a regular potential, K,(k, A) is a 
meromorphic function of A with poles on the real axis 
and negative residues (extended Stieltjes function); fur
thermore, the function has a finite radius of convergence 
around the origin, On the contrary, when V is singular, 
we expect to have a cut running from - 00 to zero in the 
A plane, supplemented by an infinite number of poles for 
A positive [corresponding to a phase shift passing through 
(2P + 1)1T/2], The Born series does not exist anymore due 
to the cut which extends up to the origin. By regular
izing the singular potential V, we obtain a family of 
potentials y<') for which we can define a family of Born 
series, for the K or T matrix (in the following we shall 
drop the dependence on the angular momentum): 

J<:')(k, A) =A~')(k) +A2~~(k) + ... , 

T(e) (k, A) =AT~')(k) + A2T~~ (k) + ... . 

(2.16) 

(2.17) 

For fixed E, we can construct the [N/N] Pade approxi
mation to these Born series. We shall define an approxi
mate phase shift Ii:(k, A) by 

Ii: (k, A) = arctan[N/ N]K (k, A), (2.18) , 
where the arctan is followed by continuity from zero for 
A=O, 

If instead we start from the [N/N] PA on the T matrix, 
it is easily shown that the previous phase shift will ful
fill the expected relation 

exp[ili: (k, A) sinli:(k, A) = [N/ N]T, (k, A), (2.19) 

This results from the fact that T and K are connected by 
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the homographical transformation (2.10), for which 
Pade approximations are covariant (Ref. 10). 

Therefore, for the calculation of 6:(k, A) it is a matter 
of indifference whether K or T matrix Born expansions 
are used, For reasons of convenience we shall, now on, 
use only the K matrix Pade approximants, 

We remind the reader that for every fixed E> 0, the 
phase shift 6:(k, A) as N- 00, tends to 6e(k, A) which is 
the true phase shift for the regularized regular potential 
AV(e) (Refs, 11,12). 

3. A PROPERTY OF THE [N/N] PADE APPROXIMANT 
ON THE K MATRIX FOR A POSITIVE POTENTIAL 

We shall first recall the following theorem (see Refs. 
12, 13): 

Theorem: Let H be a symmetric operator and I cp) a 
vector with finite norm which is in the field of any power 
of H, We set 

1 
R",(z)=(cpl l_ zH lcp>, (3.1) 

(3,2) 

The Pade approximation [N -1/ N]R (z) constructed out 
'" of the first 2N moments Ilk (k= 0,1,2, •• ,,2N -1) is 

equal to the resolvent of the finite rank symmetric oper
ator PNHPN 

1 
[N-l/N]R (z)=(CPl l PHP Icp) (3.3) 

'" -z N N 

where PN is the projector on the N-dimensional space 
[(N) spanned by the vectors {I cp); H I cp); WI cp); ••• ; 
EN-II cp)} supposed to be linearly independent. In the spe
cial case where this set of vectors is linearly dependent 
[N -l/N]R (z) is equal to R", (z) itself. We can now state 
the followi'rig: 

Theorem: The potential (nonlocal) producing the [N/ N] 
Pade approximant to the Kr matrix of the regular poten
tial V is, for V> 0, 

vN=0 /2PNVI/2, (3,4) 

where P N is the projector onto the space [(N) spanned 
by the vectors 

{(VI/2Gf(k)0 12)PVI 12 I CPr(k)}, p=O,l, ... ,N-L (3,5) 

Proof: The exact K matrix for the potential V is, recall
ing formula (2.15), 

Kr(A) = - kA(cp /(k) IVI 12[1 - AVI 12Gf(k)VI 12]-10 121 cp /(k); 

(3,6) 

using the previous theorem, we have 

K~(A) == [N/ N]K(A) (A) 

= - kA(cp /(k) 10 /2 

X[1-APN VI / 2Gf(k) VI/2PN]-IVI/2ICPr(k); (3,7) 

setting 

PN VI/2 =A, 

VI/2PN=A+, 

VI/2PN VI/2=A+A= VN> 0; 

(3,8) 

and taking into account that P N VI 1 21 cP r(k) = VII 21 cP /(k), 
we can rewrite Kf (A) on the form 
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K~ (A) = - kA(cp r(k) I A+[l - AAGf(k)A+ ]-lA I cP r(k). 

Now we have the identity 

N[l-AAGf(k)A+]-lA=A+A[l-AGf(k)NA]-1 

and, therefore, 

KN (A) = - k(cp /(k) I A V N[l - AGf(k) V N]-Il <Ii r(k) 

which proves the theorem, 

(3.9) 

(3,10) 

(3,11) 

This gives a compact and simple form of a previous 
statement which can be found in Ref, 11. 

lt is clear that the sequence of potentials V: =,rvm PN 

x;vrer is a monotonous sequence of positive operators, 
because the space [ (N+l) on which PN +I projects, always 
contains the space [(N) on which PN projects, Therefore, 
we can write 

(3. 12) 

Now by the extension to nonlocal potentials of a well
known theorem (see Ref. 14), we deduce, that the phase 
shifts o:(k, A) for fixed E, k, and A form a monotonous 
decreasing sequence, converging to 0e(k, A) 

o!(k, A) ~ 6;(k, A) ~ ... ~ 6e(k, A) ~ 6:+l(k, A) ~ ••. ~ 6e(k, A), 

(3,13) 

4. CONSTRUCTION OF THE BEST CONVERGING 
UPPER BOUND FOR THE PHASE SHIFT OF A 
SINGULAR POTENTIAL STARTING FROM THE 
KNOWLEDGE OF A FINITE NUMBER OF 
REGULARIZED BORN TERMS 

The exact phase shift is given by the limit 

o(k, A) = lim lim 0: (k, A). (4.1) 
e-O N-+oo 

It is not possible to invert those two limits, even using 
Pade approximants, because one sees easily that 

lim6:(k,A)=00 (4.2) 
e-O 

What we shall show is that it is possible to replace this 
double limit by a simple one, by connecting E and N in 
such a way that for 

N- 00 , 
E(N)- 0 0 

(4,3) 

The most remarkable property of such connection is 
that it is unique, nonambiguous, and produces at a given 
N the best approximation, in contradistinction with 
other proposals (Ref, 9), 

We shall work, from now on, at a given energy, given 
angular momentum, and given coupling constant, and 
study the property of the phase shifts as a function of 
the cutoff E, 

The exact phase shift 0e is, as a function of E, a mono
tonous increasing function of E, This results from the 
fact that, with our choice of regularization, we have 

0< E2 < ElO 

0< v(el) < v(e2) < V, (404) 

and, therefore, 

o(k, A) ~ 6e/k, A) ~ oel(k, A) ~ O. (4,5) 
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-2:rc 6 (exact) 

Since the phase shift 6:(k,A) is bounded from below by 
6.(k, A) [see (3 .13)J as a function of E and from above by 
zero l.. it has therefore a least lower bound that we shall 
call 6N (k, A), The value of E for which this least lower 
bound is obtained is called EN (should the least lower 
bound be obtained for more than one value of E, we shall 
take EN as the smallest), This procedure defines a unique 
nonambiguous, and precise set of values {EN' 5'N (k, A)}' 
We shall show that the sequence 5'N(k, A) is monotonous 
decreasing in N: 

61 (k, Ab 62(k, A);;' , •• ;;, 6N (k, A) ;;, 6N +1(k, A) '" ••• '" 6(k, A). 

(4.6) 

-lt/4 

---- 6dexact) 

--6~ 

v(El(r) = I AI f.. 
4 

r'E 
A/r4 r> E 

' .... VAE =2 .... 
" " " " " " " , , , 

" , 
" , , , , 

" , " 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

E/A1/2 

FIG. 2. For the potential Vt (r)=A!r 4• We have plotted the 
approximated regularized s-wave phase shift of as a function 
of the cutoff 0..-t / 2, for the value.rAE= 2. 
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FIG. 1. For the potential Vt (r)=A!r4. 
We have plotted the exact s-wave phase 
shift as a function of m. 

This results from the fact that whatever E, 

6:+1(k, A)';:; 6:(k, A) (as proved in Sec. 3), (4.7) 

while the last inequality results from the fact that Ii.(k, A) 
reaches its least lower bound at E = 0, 

We shall prove now that the sequence {EN' 5'N(k, A)} 
which provides already an upper bound for the exact 
phase shift, tends, when N- 00, to the point E=O and 
6(k, A), The sequence 6N(k, A) being monotonous decreas
ing and bounded from below necessarily has a limit for 
N- +00: 

(4,8) 

---- 6 e (exact) 
-2lt 

-- 6~ 
V(El(r) = I A/ E 

4 r;;E 

AI r 4 r>E 

-... 'fi:E=25 " 
-3 lt/2 

, , 
\ 
\ 
\ , , 
\ 

-It ~ 
l 

0.1 0.2 0.3 

FIG. 3. The same as Fig. 2, but for the value ,['f;Jt= 25. 
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-2lt I)(exact) 

-3lt/2 

-It 

-It/2 

5 10 15 20 

We shall show now that 6(k, A) = o(k, A). Let us suppose 
that this is false and prove that it is impossible, In fact, 
if 6(k, A) is strictly larger than o(k, A), then there exists 
an E> 0 for which 

limo~ (k, A) > 6(k, A) > o.(k, A) (4.9) 
N~~ 

and therefore, for this positive E, the PA do not con
verge to the correct value o.(k, A), which is wrong, It is 
now clear that the sequence EN goes to zero when N- 00 

due to the monotonous increasing nature of o.(k, A) in E, 

-R/4 - __ 6e (exact) 

-- 6~ 

.... (E)( )_1>../t:.6 r~ t:. 
.... ::: r - A/r 6 r> t:. 

-It/8 

0.2 0.4 

FIG. 5. The same as Fig. 2, but for the potential V 2(r) 
0= Air 6 and .;xrnE = 1. 
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FIG. 4. The same as Fig. 1, but for 
the potential V 2(r) 0= Air 6. 

In general, there is no reason for the sequence EN to be 
monotonous, in contradistinction to the sequence 6N (k, A) 
in which we are interested, In fact, numerical experi
ence shows that while 6N (k,.\) tends very rapidly (geom
etrically) to its limit, the sequence of EN is slowly con
verging, but this fact is irrelevant and from practical 
point of view it turns out to be very favorable as explain
ed in the following paragraph, 

Furthermore, 6N (k,.\) provides inside the family of 
positive potential having the same first 2N regularized 

-2lt 
(E) I A / t:. 

6 

V (r)= >"/r 6 

l5 e (exact) 

15~ 

V>..1/2E = 13 

-It 

FIG. 6. The same as Fig. 2, but for ~= 13. 
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6(exact) 

-3lt/2 

-It 

o 5 10 15 20 

Born terms the best upper bound for the phase shift, be
cause it is produced by the potential 

(4.10) 

5. EXAMPLES 

We have considered three types of potentials fulfilling 
our statements (Ref. 9): 

V1(r) = x/rt, 

V2 {r)=A/r8, 

V ( ) -x log2 r/rQ 
3 r - rt 

- - - 6c (exact) 

--6~ 

-It/4 

V(E)(r) = I Aln2(&/r 0 )/c4 r ~ c 
Al n2(r/ r 0 )/r 4 r > C 

(ro/>:J!2 = 1) 

V>:E = 2 

, , , , 
" " 

(5.1) 

(5.2) 

(5.3) 

0.2 0.4 0.5 0.6 1/2 
cIA 

FIG. 8. The same as Fig. 2, but for the potential V3(r) 
and..n::E = 2. 
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FIG. 7. The same as Fig. 1, but for 
the potential V3(r) = (AI r 4) log2(r/ro). 

Furthermore, we have, also, looked into a changing 
sign potential 

V
4
{r)=X log;fro (5.4) 

and found surprisingly that our method applies as well 
in this case. This allows one to think that our method 
extends much beyond singular potentials which do not 
change sign. 

We report here, first, the results for the potential 

(5.5) 

Besides the 8-regularization we have also introduced 
the c-regularization (c as constant) defined by 

-21t 
--- 6~(exact} 

--6~ 

-3lt/2 

-It 

0.1 

(E) \ Aln2(c/rol/c4 r~c 
V (r)= Aln2(r/rol/r4 r>c 

..... 

0.2 

(ro/Al/2 =1) 

\ VIT=20 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
~ 

0.3 

FIG. 9. The same as Fig. 2, but for the potential V3(r) 
and v0;E = 20. 
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/ 
V(r) =,xln (ro!rl! r 4 

6(exoct) 

-3 ... /2 

-It 

-It !2 

o 5 

vIe) = {Y(E) for r ~ E 

Y(r) for r?!E. 

r o!,x1/2=1. 

10 15 20 

(5.6)1 

These regularizations fulfill all the previous necessary 
. restrictions of Sec. 1(3a-c): Equation (4.1) is valid due 
to the general arguments of Cornille (Ref. 15). 

We have done the calculations with both regulariza
tions and found no difference in the results. We report 
here the results only for the c-regularization. We have 
considered only the s-wave case. 

Due to dimensional considerations the phase shift for 
the regularized potential, 

A/E4 for r~E 
y<e)(r)-

1 - AI r4 for E ?! r 

depends only in the s wave on the reduced variables: 

-Tt!4 

--- 6 E (exact) 

--6~ 
(1:) l,xln(ro!d!&4 r~f. 

V (r) = 4 
,x l n (r 0/ r ) / r r > f. 

(ro!A1/ 2=1) 

V>:E =2 
- - - - - - - --=.;::-:..:-=------

0.1 0.2 0.3 

.... 
~---" 

0.4 

, 

0.5 

" " " " " " " 

1/2 
&/A 

FIG. 11. The same as Fig. 2, but for the potential V4(r) 
and..fl\E= 2. 
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,xE 

FIG. 10. The same as Fig. I, but 
for the changing sign potential V4(r) 
= ().jr 4) log(r/ro)' 

The Pade approximants on the T matrix have been com
puted by expanding in powers of A. Then all manipula
tions have been done at fixed A and E • 

In Fig. 1 we have drawn the exact s-wave phase shift 
for the potential A/r4 as a function of A. In Fig. 2, we 
see that for AE=2 the PA [1/1] involving only the first 
and second regularized Born terms gives 

(5.9) 

to be compared with the exact value 

The second approximation and third approximation 
gives 

-2Tt bE (exact) 

/)~ 

-l( 

01 

(1:)( ) _ \ Aln (ro!&)!&4 ro!:& 
V r - 4 

Aln (ro/r)/r ro>& 

02 

(ro!,xl/2=1) 

VAE=22 

0.3 

FIG. 12. The same as Fig. 2, but for the potential V 4(r) 
and..fl\E= 22. 
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In Fig. 3, we report the same results, but for a high 
value of the coupling (or the energy), AE = 25: 

(51= _ (0. 572)1T, (52= - (1. 04)1T, (53= - (1.40)1T, 

(54 = _ (1. 585)1T, (55 = - (1. 631)1T, Ib - (1. 640)1T. 

(5.12) 

We see that the convergence is slightly slower, but the 
calculation of (55 still takes an unsignificant time on the 
computer. We must acknowledge that the calculation of 
65 corresponds to analytically continuing by the P A the 
regularized Taylor series in the coupling constant to 
4.68 radius of convergence! 

The numerical calculation has been made in the fol
lowing way: For the exact phase shift corresponding to 
o,(k, A) (e > 0) we have used the Volterra equation fulfilled 
by the Jost solution. To get the exact phase shift o(k, A) 
we have numerically extrapolated o,(k, A) for e_ + O. 
This can be done without difficulty due to the general 
theorem on the convergence in e and to the extremely 
strong stability of the function o,(k, A) for e small. 

For the Pad€! approximants, the approximated phase 
shift O:(k, A) has been obtained from the regularized 
Born series on the K matrix, This last Born series be
ing deduced from the Taylor series of the Jost function, 

On Fig. 3, one notices a very interesting fact: The 
maximum of the O~(k, A) in e, are, when N increases, 
still obtained for rather large value of e. As a conse
quence the calculation is very reliable and do not present 
any difficulty for the precision required (3 x 10-3). This 
would not have been the case, if the points of maximum 
would have gone to zero too rapidly, due to the difficulty 
of computing integrals nearly singular, 

In Figs. 4,5, and 6, we report results very analogous 
to previous ones, but for the potential A/ y6 • 

In Figs. 7, 8, and 9 we give the results for the poten
tial (Vy4)log2r/ro' This potential is interesting because 
for it, the peratisation method fails completely. 

In Figs. 10, 11, and 12 we show the results for a 
changing sign potential - (Vy4) log r/ro• We see that 
nothing is changed in the behaviour of the curves. 

CONCLUSION 

In this paper we have given a rigorous proof in a par
ticular physical context of a very general procedure, 
which was explained in the Introduction. 

One can remark, looking to formula (2.15), that the 
values for which the phase shift goes through an odd mul
tiple of 1T/2 correspond to the eigenvalues in A of the op
erator IV Gf(k) N. Therefore, we also compute for 
these values of the phase shift approximated discrete 
eigenvalues of an operator having an unbounded continu-
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ous spectrum (corresponding to negative values of the 
coupling constant for which one has physically a col
lapse). By making use of this remark and also of a theo
rem of Ref. 5, it is not very difficult to obtain a rigor
our proof for a similar method applied to the calculation 
of the bound states of an arbitrary singular potential re
pulsive in the origin but not of definite sign; This will 
be the object of a forthcoming paper. 

The generalization of these procedures to the N-body 
problem, can be done for certain types of interactions. 
The interested reader will find in Ref. 5 the method and 
the rigorous tools. 
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We describe some photon states with nonzero energy density in the whole space; these states are 
obtained by taking a finite number of photons within a finite box and letting the volume and the 
number of photons go to infinity according to usual procedure in statistical mechanics. In such a 
limit we describe an observable phase operator; we investigate its properties both in the case of free 
field and in the case of coupling with prescribed classical sources. Finally we give a quantum 
description of uniform static field. 

INTRODUCTION 

In a previous paper, 1 we studied the problem of the 
existence of an observable phase operator for a system 
of massive bosons. Let us briefly recall the classical 
origin of the problem: let p and q be the classical canon
ical variables of a system with one degree of freedom; 
equivalently, one can consider the following canonical 
variables: 

n = ~(p2 + if), 

cp = arctan(p I q). 

(1.1) 

(1. 2) 

This transformation leads to trivial Hamilton's equa
tions for the harmonic oscillator. 

Quantization of the problem has been studied in a lot 
of papers (see Refs. 2,3,4 and the references of these 
two last papers). If we assume there exists two self
adjoint operators Nand <P such that 

N<p - <P N <;;:: i Jl, (1. 3) 

then we have the following uncertainty relation: 

D,<p • DoN? ~ • (1.4) 

It has been recognized that (1.4) leads to contradictions 
from a physical point of view; in any case, the existence 
of a self-adjoint operator <P satisfying (1. 3) is incom
patible with a lower bounded N. 

In the previous papers on this question the only sys
tems which have been conSidered were one-dimensional 
systems (except in Refs. 1 and 5). In Ref. 1 we dealt 
with 'systems with more than one degree of freedom and 
we showed that the existence of an observable phase op
erator is incompatible with an observable number oper
ator. This operator has been used to build a simple mo
phase operator for systems with a finite number of de
grees of freedom. Moreover, in the thermodynamical 
limit and for condensed systems of massive bosons we 
were able to exhibit explicitly an observable phase oper
ator. This operator has been used to build a simple mo
del of the Josephson's effect where the notion of phase 
plays an important role (see Refs. 5-7). 

However, the first use of a phase operator was done 
by Dirac 8 for radiation field. This field of application 
is certainly much more natural than the one we consider· 
ed in Ref. L Indeed, in classical theory one has a no-

tion of phase for light beams. This notion is essential 
to define the coherence properties of light, and, for ex
ample, to describe interference phenomena. 

On the other hand, one has to realize that for a photon 
field the notion of total number of particles has no phy
sical meaning. Indeed, and this is a well-known argu
ment, whatever be the detector it has a finite resolution 
and cannot detect the soft photons; hence there is a com
plete uncertainty on the number of photons. Consequent
ly, for a field of photons in the whole space we are pre
cisely in the same situation as for a maSSive Bose gas 
with finite density as far as the number of particles is 
concerned. It is tempting to look at the problem of the 
radiation field USing the methods of Ref. 1 to define an 
observable phase operator for photons. 

We describe in Sec. 2 an algebra for infinitely extend
ed photon field which takes into account the POincare in
variance, the gauge invariances of both kinds, and we 
give within this formalism the essential usual definitions 
of Fock representation. 

In Sec. 3 we start from a system of N photons local
ized in a box of finite volume V. In a bOX, the allowed 
energy levels are discrete and it is possible to separate 
the first excited level from the zero energy level; so the 
notion of total number of excitations makes sense and we 
can work within the Fock representation. 

We make the standard limiting procedure N - 00, 
V - 00, N IV being constant and define in this way a state 
of the photon field with finite energy denSity which is no 
longer a Fock state. This state is precisely a plane wave 
state. Within the associated representation there exists 
an observable phase operator, which is explicitly given. 
Notice the similarity of this situation to the condensation 
of a massive Bose gas below the critical temperature in 
the zero momentum mode. 

In Sec. 4, we repeat that procedure in the case of a 
system of photons coupled with an external classical 
source. The limiting state has a phase which is not 
equally distributed but which tends to be concentrated 
around the phase of the radiated classical field. 

Finally, in Sec. 5 we make the limit k - 0 for the state 
we obtained in Sec. 3. In this way we describe an uni
form static field. 
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2. THE ALGEBRA OF THE PHOTON FIELD 

Classically a free photon field is described by avec
tor potential x-AI'(x), J..L=0,1,2,3, x=(xo,x), satisfy
ing the wave equation 

(2.1) 

In order to construct in quantum theory an algebra 
whose states will be the states of the photon field we 
shall make use of the explicitly covariant formalism 
which is in Ref. 9; we shall recall the essential 
definitions. 

The Minkowski space M is the real space R4 endowed 
with the metric 

(2.2) 

its complexification M' is the complex space 0:4 of vec
tors x = XI + i X 2(X1, Y, E M) with the scalar product 

x'Y=X1'Yl +X2'Y2 +i(X1·Y2-X2·yJ. (2.3) 

Let us consider a function f from M to M' which satisfies 
the wave equation 

Dj(x) =0; (2.4) 

it can be written 

j(x) = (21T)"3/2 J exp(ik· x)j(k)dn(k) (2.5) 

where dn(k)=d3k/2ko is the invariant measure on the 
light cone (ko = I k I). The space L is the linear space of 
the positive energy solutions of (2.4) which satisfy: 

3 

(i) L J IJI'(k)12 dn(k) <00, 
I' -a 

(ii) al'fl'(x)=O~k .j(k)=O (Lorentz condition). 

On this space it is possible to define a positive semi
definite scalar product 

(j,g) = i J r*(x) aogl'(x)d3x 

= J jl'*(k) gu(k) dn(k). 

(2.6) 

The one photon Hilbert space is the quotient i =L/Lo 
where La is the subspace of isotropic vectors in L with 
respect to (2.6). The Fourier transform of functions in 
La are of the form: 

lo(k)= >t(k)k, (2.7) 

where >t(k) is an arbitrary function. 

For the sake of convenience we shall deal with Land 
we shall verify at each stage that our results are com
patible with gauge invariance (see below). 

As usually for bosons, we define the antisymmetric 
real bilinear form a on L: 

CJ(f,g) = (2i)-I[(f,g) - (g,f)]. (2.8) 

This symplectic form CJ is degenerate on La. 

The C* - algebra ~(L, CJ) is constructed according to 
standard procedure10,ll: ~(L,CJ) is the *-algebra gen
erated by the elements of> fE L, which satisfy the Weyl 
relation 

0fOg = exp[ - iCJ(j,g)]of+g' 

The of are unitary: 
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(2.10) 

On this algebra ~(L, CJ) there exists a C* - algebra norm 
for which any state of ~(L, CJ) [i. e., any linear positive 
normalized functional on ~(L, CJ)] is continuous hence 
extends to a state of the closure ~(L,CJ). 

A state W of ~(L, CJ) is a Weyl state if the function 
>t - W(of+>.g) is continuous at >t = O. If 1Tw is the represen
tation of ~(L,CJ) on Hw with cyclic vector nw deduced 
from the Weyl state W by the usual Gelfand-Naimark
Segal (GNS) construction, the Stone theorem leads to 

(2.11) 

Aw(f) is the field operator smeared out with the func
tionfEL. 

Creation and annihilation operators are defined by 

A:(f)=HA)j):FiAw(if}] (2.12) 

and satisfy the usual commutation relations; in 
particular, 

(2.13) 

Due to the choice of L instead of i, ~(L, CJ) has a cen
ter which is precisely ~(Lo). The gauge invariance of 
the theory imposes to consider only states such that 

W(Of+fO)=W(Of) 'r/ foELo. 

This condition is equivalent to 

W(OfO) = 1 'r/ foELo 

Or Aw(to) = O. 

(2.14) 

(2.15) 

On ~(L, CJ) is defined the compact group of * -automor
phisms corresponding to gauge transformations of the 
first kind: 

(2.16) 

If 1T is a representation of ~(L, a) such that there exists 
a weakly continuous group of unitaries U9 which imple
ment a9 , i. e. , 

(2.17) 

then the infinitesimal generator N of U9 is a particle 
number for the representation 1T.12 

We can also define the representation of the POincare 
group into the * -automorphisms of ~(L, CJ) by 

aaof=ofa (tix)=j(x-d), dEM), (2.18) 

aAOf=OfA (fA(x)=Aj(A-IX ), AEL'). (2.19) 

Let us recall now some properties of the well-known 
Fock representation: It is the representation associated 
by the GNS construction with the state WF of ~(L, CJ) de
fined by 

wF( of) = exp[ - (t,f}/2]. (2.20) 

Let (1TF' HF,nF) be the GNS triplet associated with WF' 
WF is a Weyl state, so 1TF(of)=exp[iAF(t)]. The oper
ators A F(t) =A j,.(f) + A ~(f) can be deduced from the field 
operator A F(X) 

AF (x)=A;" (x) +Aj,. (x) (2.21) I' I' I' 

by 
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(2.22) 

In (2.21), the operators a,,(k) and a;(k) satisfy the ca
nonical commutation relations 

[a" (k), a:(k')L = g"v2koii3(k - k') 

and we have 

l/ fEL 

(2.23) 

(2.24) 

which completes the connection with the usual formalism. 
Moreover, WF( ii fo ) = 1, l/ fo E Lo; so, we have gauge 
invariance. 

As wF is invariant with respect to the group of *-auto
morphisms (2.16), TTF is a representation with a particle 
number NF• The spectrum of NF is the setZ;+ of positive 
integers. 

We already mentioned in the introduction that the exis
tence of such an observable particle number is not phy
sically reasonable except within a box. 

On the other hand, as shown in Ref. 1, there is no 
Hermitian phase operator <PF verifying the commutation 
relation [NF , <PFL=i. Indeed, the existence of an obser
vable phase operator <P in a representation 7T with re
spect to a particle number N implies that the spectrum 
of N be the whole set Z of integers. 1 In this case the re
presentation is not quasi-equivalent to the Fock one. 12 

In the Fock representation the coherent states are 
well-known: 

w/iif)=exp[-Hr,f) -2io(g,J)], 

gEL, 

where the corresponding cyclic vector is 

10,.) = exp[ -iAF(g)] I OF)' 

(2.25) 

(2.26) 

More generally, we shall consider in the following 
states defined by 

We (ii f) = exp[ - t([,f) + iG(f) 1 (2.27) 

where G is a real linear form on L; then we shall call 
them coherent states even if G is not continuous with 
respect to the norm in L. In this case we is not quasi
equivalent to Fock state. 

3. QUANTUM CONSTRUCTION OF THE PLANE 
WAVE STATE 

We are interested in describing a plane wave extend
ed in the whole space R3 as it is commonly defined in 
claSSical theory. We look for the corresponding state 
of Il(L, (1) in the quantum description. This state cannot 
be a Fock state since a plane wave has an infinite en
ergy and the number of photons must be strictly infinite. 
Nevertheless, it carries a finite density of energy and 
a finite density of photons. This will allow us to induce 
its form by a method adapted from the classical calcu
lation of Araki and Woods for the massive Bose gas. 13 

Let uS consider N photons all in the same one-particle 
state: their wavefunction is the function f v, _,k of L 
which is given at t = 0 by 

f (x 0) = X(V) exp(zk. x) E 
V,',k, .fV ~ 

o 
EEM', 
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where x( V) is the conveniently regularized character
istic function of the volume V c R3. 

fV,_,k describes a photon of polarization E, localized 
within the volume V at the time t = O. In the limit V - 00, 

this function will describe a photon of definite momen
tum k. The natural representation for such an N-photon 
system is the Fock representation, and the correspond

,ing vector in HF is 

(3.2) 

Denote by W v the state of Il(L, (1) associated with the 
vector (3.2) through the relation 

wv( iif ) = (<p N, V,',k I exp[iAF([)] I <PN, V",k)' (3.3) 

A calculation Similar to the one done in Ref. 13 gives 

WV (1i f ) = exp[ - (f,J)/2] LN ( 1([ V,.,k'/) 12) 
where LN is the Mh Laguerre polynomial. 

(3.4) 

In order to get the plane wave Situation, we take the 
thermodynamical limit N - 00, V - 00, keeping constant 
the energy density w = Nko/V. In this limit the scalar 
product ([v,.,t,/) behaves like 

(27TP/2 1 -
..f2ii: IV E· j(k) . 

o 

So we obtain (f. = E .1> 

th-lim wV(lif ) = exp[ - (f,J)/2]lim LN (27T)3 2~2 17. (k) 12
' 

N .. «J 0) 
= exp[ - (f,j)/2] JO(A Il.(k) I) with A = (27T)3/2{-I2W/ko)' 

(3.5) 

Formula (3.5) defines a Weyl state wk " of Il(L, (1). 

Rewrite (3. 5) as 

wk,.(ii f ) = 2
1

7T [2< de exp{ -t([,f} + iA[Re1.{k) cose 

+ ImJ.{k) sine ]}. (3. 6) 

Wk,. is a convex combination of Weyl states; precise
ly it is a convex combination of coherent states which 
are not quasi equivalent to Fock state. 

It is obvious to verify that the state "1", does not de
pend on the time origin where the initial condition (3.1) 
was given. Furthermore, wk " is translation invariant 
and satisfies the covariance property 

(3.7) 

We have gauge i~variance wk ,.(iifo )=l, foELo, since 
([0'/0) = 0 and E . fo(k) = 0 from (2. 7) and Lorentz 
condition. 

Finally, wk " is invariant with respect to the gauge 
transformation of the first kind (2.16); hence the cor
responding cyclic representation 7Tk ,. has a particle 
number N. From (3. 6), 7Tk ,. is not quasiequivalent to the 
Fock representation; so the spectrum of N is the whole 
set Z of integers. 12 

Explicit construction of 1Tk ,. can be made following 
Ref 0 13. Let Hand ° be the space representation and the 
cyclic vector. Then 
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(3.8) 

where!11 is the Hilbert space of square-integrable func
tions on the unit circle with respect to the Haar measure 
d6/2rr, 

(3.9) 

where X 0 is the constant function equal to one on the unit 
circle, 

rrk ,,(1i,) = rrF( 0,) ® exp{i~[Rel.(k)C + Iml.(k)S]} 

with the follOwing definitions of C and S: 

(CX)(6)=COSOX(0)} M 
X E '". 

(SX)(O) = sinO X(6) . . 

(3.10) 

(3.11) 

(3.12) 

Creation and annihilation operators are obtained from 
(2.11), (2.12), and (3.10): 

AV) =Ap,(f) ® :n + 1 ® ~A.1,(k)(C - is), 

AV) = Ap,(f) ® 1 + l®~A.1:(k)(C +is). 

(3. 13) 

(3.14) 

Using these formulas and (2.22), one can deduce the 
expression of the field operator components in a normal· 
ized basis (e,,), IJ.=O, 1,2,3 of M': 

A~ (x) =A~,,, (x) ® n + 1 ®.fW72" exp(~ ikx) (E. elL )(C 'f is). 
o 

(3.15) 

One verifies that A" (x) satisfies the free field equa
tion. The particle number is 

N=NF ® l+l®(id~)' (3.16) 

According to Ref. 1, there exists an observable phase 
operator cI> defined by 

(3.17) 

with 

(3.18) 

Two remarks on the operator ei~: 

(i) Its mean value in the cyclic vector n is zero. We 
shall say in this case that the phase is equally 
distributed. 

(ii) Its eigenvectors are improper elements of H: their 
Ih components are Dirac measures on the unit circle. 

Using (3.9) and (3.15), one can calculate the differ
ent correlation functions: 

(nln) = 1, 

(n IA~(x) I n) =(n IA~ (x) In) = 0, 

(n In A~ (xl)n A; (x) In) =0 if n* m 
jol 1 Jol J 

(3. 19) 

(3.20) 

=nA~I(xI)nA"J(x) if n=m, 
1.1 J.1 

where (3.21) 

A ( ) _.r:=7TT exp(ik . x) (. ) 
" X -v W ,,, k E elL 

o 
(3.22) 

A(x) is precisely the 4 potential corresponding to a plane 
electromagnetic wave of momentum k and polarization E. 
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Formula (3.21) shows that the state Wk" ensures a 
complete factorization of even correlation functions. 
This result has to be connected with the conditions of 
complete coherence for the electromagnetic field as 
given and discussed in Ref 14. 

The problem of finding the states of the electromag
netic field which satisfy (3.21) has been already solved 
in two different ways. Firstly, Glauber showed in Refs. 
14 and 15 that, in the Fock representation for finite sys
tems, the solutions are the coherent states up to an in
tegration over their argument, which corresponds to the 
decomposition (3.6). Secondly, if one works within a 
classical theory where A,,(x) is a random function and 
the mean value stands for an average with respect to 
some probability density, one gets claSSical plane waves 
(see for example Ref. 16). At this point, it is tempting 
to make the connection between these two approaches by 
identifying the amplitude and the phase of the plane wave, 
respectively, with the modulus and the argument of the 
coherent state. However, this leads to troubles since the 
relationship between the phase and the number of parti
cles is not as expected (see, for example, Ref. 3). 

We have here escaped to these difficulties by going to 
a representation of CCR which is not quasiequivalent to 
the Fock one. Within our formalism it is possible to ex
hibit a state which ensures the full coherence and such 
that the modulus and the phase of the field are both 
observables. 

4. PLANE WAVE LIMIT IN PRESENCE OF A 
CLASSICAL CURRENT 

We want now to accomplish the same program as in 
Sec. 3 but in the case where the electromagnetic field is 
coupled to a prescribed c-number current distribution. 

This study is the natural extension of the previous one 
in the sense that it will allow to reach more concrete 
physical situations with specific phase properties. 

We shall work in the radiation gauge and in the Heisen
berg picture. The field equation is then 

DA(r, f) = J(r, f), (4.1) 

where J(r, f) is the transverse component of the current. 
In the Fock representation we write the Fourier decom
position of the field operator: 

AF(r, t) = (2rr)"3/2 J dn(k)[a(k, t) exp(ik' r) 

+a+(k, f) exp( - ikr)] (4.2) 

with the commutation relations (2.23) at equal time for 
the operators a/(k, f) and a;(k, f). 

Similarly, we shall use 

J(r,f)=(2rr)"3/2 J dn(k)J(k,f)exp(ik.r). (4.3) 

We choose the solution of (4.1) which reduces to a 
free field at time f = - co. We get (see, for example, 
Ref. 17) 

a(k, t) = a(k) exp( - ikof) + g(k, f) (ko = Ik I) 

with 

g(k, f) = 2! i df' exp[ - iko(t - fl)]J(k, fl) 

(4.4) 
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The operators A~(f) are defined as before by formula 
(2.22), where fbelongs to L, but now they explicitly de
pend on time, since AF(r,t) no longer verifies the free 
field equation (2.1). We shall write them A~,N); from 
(2.22) and (4.4), we have 

AF,I(f)=AF,<_)(f) + (f,g), 

A~,,(f)=A~,<_)(f) + (g,j), (4.6) 

where (f, g) is defined by (2. 6) but only the spatial com
ponents of f and g are concerned due to our choice of 
gauge, and it explicitly depends on time. 

Note from (4.4) that the Fock algebras of the field op
erators are the same in the both free and interacting 
cases. This justifies that we continue to work in the in
teracting case with the photon algebra ~(L, (1). 

Let us now approach the plane wave limit as we did 
in Sec. 3. Namely, we consider the Fock vector state 
at time to: 

I<p~ V,.,k) =A~"Nv,.,k)N InF) (4.7) 

and we calculate the thermodynamical limit of 

W'O(o ) _ (<piP.y .•. k I exp[iAF,I(f)] I <P~~ v ••• t) 
v ,- (<P to I <p 0 ) 

NIV,E,t N,V,E,II: 
(4.8) 

keeping constant the energy density w = Nko/V. 

Obviously, the state defined by (4.7) is no longer an 
Nphoton state. It appears, however, as a natural gen
eralization in the interacting case of the previous one 
(3.2): Starting from the same initial condition at time 
t = - 00, the same construction is performed at time to. 

In the present situation InF) is no longer the vacuum 
for the operators AF,I(f), but a coherent vector state 
for these ones. 

Indeed, from (4.6) 

AF,N) I n F) = (f,g) I n F). (4.9) 

As in Sec. 3, through a calculation similar to the one 
given in Ref. 13, we obtain (g.(k, t) = €. g(k, t» 
th-limu!.?( 0,) = exp[ - (f,f)/2] exp[2iRe(f, g)] 

x JO(A[ <1. (k) - ig. (k, to» <1. *(k) - igi'{k, to» ]1/2) 
Jo(fA I g.(k, to) I) 

1(4.10) 
which reduces to (3.5) when J=O. 

As before, (4.10) defines a Weyl state w!o. of ~(L,(1) 
and we have gauge invariance since ' 

w!~.( 0'0) = 1 'fI fo E L o' 

We can rewrite (4.10): 

w!~.( Of) = exp[ - (f,j)/2] exp[2iRe(f,g)] 102
< dJ.l.(O) 

xexp{iA[Ref. (k) cosO + Imf. (k) sinO]} 

with 

(4.11) 

(4.12) 

The corresponding space representation as previously 
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in the free case is H = H F ® /'II. On the contrary, the cy
clic vector18 is notably changed: 

(4. 13) 

with 
10 (0) _ exp[h I g.(k, to) I cos(O - cp)] 

Xk,. - [JO(iAlg.(k,to)I)]1/2 (4.14) 

(cp = Argg.(k, to». 

Creation and annihilation operators in this represen
tation space are 

A;(f) =A~,t(f) ® 1I. + 1I. ® ~ f.(k)(C - is), (4.15) 

(4.16) 

and the field operator is 

A~(r, t) =A},;(r, t)® .1I. + 1 ® v'w72" 

x exp[ 'f i(k . r - kot)] (. )(C 'S) k € e j 'f t • 
o 

(4.17) 

This expression (4.17) is very Similar to formula 
(3.15). However, one must keep in mind that AF(r,t) is 
no longer a free field, but verifies the coupled equation 
(4.1). This ensures that A(r, t) given by (4.17) also 
verifies (4.1). 

The particle number and its associated phase opera
tor are still defined through (3.16) and (3.17). The ma
jor difference between the free and the interacting case 
concerns the cyclic vector, specially on the question of 
the phase properties. 

More precisely, let us calculate the mean value 

(n to I ei~ I nto) =(X!~. I (C + is) I X!~.) 

( . )h(Alg.(k,to)l) 
=exp tcp ( ( ) 10 Aig. k,to I) (4.18) 

where In(x) are the real Bessel functions of complex 
argument which are defined by 

In(x)=(-i)nJn(ix), xER, 

and whose asymptotic behaviour is 

In(x) _(2rrx)-1/2 eX 'fin, when x- +00. (4.19) 

The relation (4.18) shows that the phase is no longer 
equally distributed as it was in the free case. This is 
due to the fact that the function X!~.(O) has a maximum 
for 0 = cp. The larger A I g.(k, to) I the more important is 
the peak. When A I g.(k, to) I tends to infinity, the ratio 
IJIo tends to one, according to (4.19); so 

(ntolej~ln'O)-exp(iCP) whenAlg.(k,to)l-oo. (4.20) 

Since exp(i<P) is unitary, this implies that the corre
sponding dispersion tends to zero. 

We conSider now the correlation functions of the state 
w!~ •• As the phase in this interacting case is not equal
ly distributed, the mean value of the field operator 
doesn't vanish: 

(OtoIAj(r, t) IntO) =gj(r,t) +v'w72" exp[i(\r -kot)] (€. ej ) 
o 

(4.21) 
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The ratio /1(,\ 1 ge(k, to) 1 )/10 (,\ 1 ge(k, to) I) is zero for 
'\Ige 1 =0, hence we recover the free field situation for 
J = O. This ratio approaches one in the limit ,\ 1 g. 1 - 00. 

In this case, (4.21) appears like the superposition of 
the classical field g(r, t) radiated by the current distri
bution with a plane wave of momentum k, energy den
sity wand whose phase cp is completely determined by 
the time parameter to (more precisely, cp is the phase 
of the classical radiation field at time to). 

The n-point correlation functions no longer factorize 
except in the limit ,\ 1 ge 1- 00. Moreover, the odd func
tions are different of zero. Namely, 

(4.22) 
with 

f. exp(ik • x) ) .) 
::t I(X) =gl(x) + v'W7Z" k (e. ej exp(lcp . (4.23) 

° 
The state we have constructed exhibits nontrivial phase 
properties. It was already clear in Sec. 3 that one can 
build a lot of such states with phase properties, more 
precisely states where the phase is not equally distrib
uted. The interesting feature of the last procedure is 
that this phase distribution comes from nontrivial phy
Sical situations. Indeed, one can, for example, use the 
previous analysis to devise a simple phenomenological 
model of laser above threshold in the spirit of Ref. 19, 
where the external current is the electronic current in 
the laser cavity. One can also use the previous results 
to build a simple quantum model of interferences far 
from sources. We shall come back to these applications 
in a forthcoming paper. 

5. CONDENSATION AT k = 0: THE STATIC FIELD 

In Sec. 3, the momentum k was strictly different of 
zero. Indeed, starting with N photons of momentum k = 0 
in a box, we could not recover a finite density of energy 
in the thermodynamical limit. However, a uniform static 
field is actually a physical situation where there exists a 
finite density of energy and whose quantum description 
needs an infinite number of photons of momentum k 
strictly equal to zero. So, it seems that such a situation 
can be only obtained in considering the limit k==O after 
having performed the thermodynamical limit on a finite 
free system with photons of momentum k* O. 

We shall accomplish this procedure on the electro
magnetic tensor F .. y of the representation in H, which is 
explicitly built from the field operators (3. 15): 

= F F , .. v(x) 0 1 + 1 0 V'lW (sin(k . x)C + cos(k • x)S) 

(5.1) 

where 

ay=ky/ko, v=0,1,2,3. 

Then, we take the limit k=O in (5.1), keeping constant 
the four quantities a y • 

It becomes 
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(5.2) 

We derive now the electric and magnetic field operators 

EiO)(x) = F~~)(x) 

= E F, I(X) 0 .lI. +.n. 0 v'2W«e. el)ao - (e. eo)a I)S, 
(5.3) 

(5.4) 

In the radiation gauge, the phySical meaning of for
mulas (5.3) and (5.4) is more apparent. Indeed, we can 
rewrite in this gauge: 

(5.5) 

B(x) = BF(x) 0.n + n 0 v'2W(E 1\ a)S. (5.6) 

The j}J components of the operators E(x) and B(x) keep 
the features of a plane wave which propagates in the 
Q direction with the polarization ~. 

The averages in 1 n) of the denSity energy oper
ator and of the density momentum operator are easily 
calculated and we obtain the expected values 

<n I E+(x) . E-(x) + B+(x)B-(x) I n) == w, (5. 7) 

<nIE+(x) 1\ B-(x) - B+(x) 1\ E-(x) In) =wa. (5.8) 

Further, the mean values <n 1 E(x) 1 n) and <n 1 B(x) 1 n) 
are clearly equal to zero. 

These last results show that the representation in 
H == H F 0 j}J with cyclic vector 1 n) and field operator 
deduced from (5.2) is the good one to describe a uni
form static electromagnetic field. 
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An approximation is constructed to the phase-space. or Wigner. distribution function for a 
three-dimensional, dense Fermi gas in a spherically symmetric potential well. Near the surface 
separating the classically forbidden region from the classically allowed region, quantum oscillations 
occur. The oscillations are expressed in terms of a universal function. 

I. INTRODUCTION 

In paper 11 we investigated the Wigner transform 
f(P, q) of the density matrix at absolute zero for a collec
tion of N independent fermions in an external, one
dimensional potential field, The following results were 
established. Consider the function f displayed in the 
(tWO-dimensional) p-q space which can be thought of as 
the semiclassical jJ. -space; then 

(1) The classical limit of f gives the well-known 
Fermi-Dirac step-function distribution, f= 1/21Tn, H < 
EF; f = 0, H> EF, where EF is the Fermi energy and H 
the classical one-particle Hamiltonian. 

(2) In the semiclassical approximation there are un
dulations superimposed on the step function. The ex
trema of these undulations lie on constant energy curves 
which are separated from each other by a characteristic 
energy E(E); the last and largest maximum occurs below 
the Fermi energy, at EF -2.33 E(EF). At the Fermi en
ergy, f is 1/3 of its average interior value, and it drops 
exponentially to zero for energies larger than EF , The 
characteristic energy E(E) can be expressed in two ap
prOXimately equivalent ways. If the Hamiltonian exhibits 
two turning points, we obtain e(E) = nw(E)(J(E)/n)1!2 j 
where J(E) is the classical action and w(E) the classical 
frequency associated with the energy E. If the system 
has one turning point, we obtain 1f2/3/(mV~y/3, where 
V~ is the derivative of the potential evaluated at the clas
sical turning point associated with the energy E. The 
functional forms are given as follows. If there is only 
one turning point [I, Eq, (8)], 

1 1'" f(P, q) = 2n dtAi(t) 
1T (H-EF) 1< 

where Ai(t) is the Airy function of argument t, and 

E = (1f2/3/2mI/3) V'2/3. 

If there are two turning points [I. Eq. (21)], 

(1) 

f(P,q)=(-2 1t l'" dtexp(-t/2)Lll)(t), (2) 
1Tn 4.J(H)!2r~ 

J(H) = classical action with E replaced by H(P, q). 

The functional forms immediately show that at a given 
point p, q, f exhibits a branch point as a function of n, 
for If = O. This enables one to interpret the undulations 
around the sharp edge of the classical distribution as a 
diffraction pattern in the jJ. -space. 

In the present note we shall generalize these results 
for three-dimensional spherically symmetrical poten
tials, and show that all the previous results carryover, 
both qualitatively and quantitatively. The simplicity of 
our results is due to the fact that the Wigner transform 
of the angular part of the density matrix associated with 
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the total angular momentum -n(l + 1/2) reduces to a 
high degree of approximation to the delta function 
o(n(l + 1/2) - p~q) (see Eq. 7a), where p~ is the magni
tude of the momentum perpendicular to the coordinate 
vector q which has the magnitude of q. 

II. THE SETTING OF THE PROBLEM 

Let (x I p I x') be the singlet density matrix in the co
ordinate representation of a collection of N independent 
fermions immersed in the spherically symmetrical po
tential V, the system being in its ground state at abso
lute zero. The Wigner function associated with the sin
glet density matrix is given as 

f(P,q) = (2!)3 f dSz(q+z/2Iplq-z/2)exp(-ipz), (3) 

where q and p are vectors; q and z are defined through 
the transformation 

(x+x')/2=q, 

x-x'=z, 

The units are so chosen that m = 1, n = 1. 

In the present case, p is defined as 

where the summation extends over all quantum numbers 
nlm for which Enl < E F ; x, x' have the coordinates 
(r, 8, cf», (r', 8', cf>') in spherical polars. The wavefunc
tion associated with the energy Enl is given by (xnl(r)/ 
r)Ylm(8, cf»; n is the radial quantum number (usually de
noted by nr ); l, m are the azimuthal and magnetic quan
tum numbers; Y1m(8, cf» are normalized spherical har
monics; Xnl is normalized as J '''x~, dr= 1, 

The summation over m can immediately be performed 
using the addition formula 

~ (n-m)l 
P m(cos8)Pn(cos8') + 2D ( + ); 

md n m. 

X P,;'(cos8)p:;'(cos 8')cosm(cf> - cf>') = Pn(cose) 

where e is the angle between the vectors x and x', with 
angular coordinates 8, cf> and 8', cf>'. 

This way we find 

(xlp Ix')=~'~' (l + 1/2) Xnl(r)~p (cose). (5) 
n I 21T r r' I 

To induce Wigner' s transformation on (5) we must ex
press r, r', and e as functions of the vectors q and z. 
In this we are greatly facilitated by observing that in the 
lowest approximation only small values of z « q) will be 
of importance, if we neglect zero angular momentum 

Copyright © 1974 American Institute of Physics 2086 
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FIG. 1. Transformation from x,x' to q,z. 

states. If we restore h in the exponential, we see that 
only Z values of order h/ P will contribute significantly, 
while we expect from the uncertainty relations that q> 
h/ P - z. The omission of the zero angular momentum 
states will introduce an errOr for small values of q 
where these states contribute exclusively to the density. 
For large values of q their contribution is small com
pared to the nonzero angular momentum states. In what 
follows we can consider the 1 = 0 states omitted from the 
sum; as we shall see later it does not matter, since for 
p * 0 the 1 = 0 terms will not contribute anyway. 

For small values of z, r, r', and e are simple func
tions of q and z. Introduce z" and zJ.' the magnitudes of 
the vector-projections of z along and perpendicular to q. 
Then for small values of z, r=::q+z,,/2, r'=::q-z,'/2, 
e =:: Z J q, as is immediately evident from Fig. 1. Intro
duce similarly P'1 and PJ. as the magnitudes of the vector
projections of p along and perpendicular to q, and </>, the 
angle between the perpendicular vector-projections of 
z and p (Fig. 2). This enables us to write p.z as p"z" 
+PJ.zJ. cos</>. Finally, we observe that for small e and 
1*0, p,(cose)=:: Jo[(l + 1/2)e]. 

From (5) and (4) we get 

f(p, q) 

I,,' --,' [00 ['" £2" (1 + 1/2) 
=(2 )3 D 2..j dz" dzJ.zJ. d</> 2 7T n ,-00 0 0 7T 

x JoW + 1/2)zJ q] exp( - i(p"z" + PJ.zJ. cos¢>)) 

xXn,(q + z,,/2)xn,(q - z,,/2) _1-£/£/ 
if (27T)3 n , 

X([dZ" e-IS>""'Xn,(q + z,,/2)Xn,(q -Z,,/2») 

(1+ 1/2) [00 
x if 0 dZJ.zJ.Jo[(l + 1/2)zJ q] 

x [2lr :: exp(-iPJ.zJ.cos¢». 

(6) 

Here two further approximations have been made. In the 
denominator we approximated rr' by if, and replaced 
the q dependent limits of the Z integrations by ± "". In 
principle the z integrations must take into account that 
r is defined for positive values only. However, to the 
extent that our expansion in the smallness of z makes 
sense the results must be insensitive to the finiteness of 
these limits, and can be replaced by ± "". 
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The </> integration can be performed using the formula 
1027 exp( - itcos¢» d</>/27T == Jo(t) , where Jo(t) is the Bessel 
function of order zero. The zJ. integration can now be 
performed using the formula 

fa 00 dttJo('xt)JO(A 't) == O(A - A ')/..Jri:i 

(with A == (l + 1/2)/ q, A' == p), 

which expresses the completeness of the Bessel function 
Jo in the Fourier-Bessel series. This way we obtain 
our basic expression 

1 ,,' 
f(p, q) = (27T)3;,' Fnl(q, p,,)o(l + 1/2 - pJ.q) (7a) 

with 

Fn,(q, PII) == f.: dz II exp( - iP"zlI)xn,(q + z,,/2)xn,(q - z,,/2). 

(7b) 

(The other factors which appear in the sum cancel if we 
replace them with those values which are allowed by the 
delta function. ) 

In the subsequent sections we shall evaluate (6) uSing 
various approximations in (7b). 

III. THE CLASSICAL APPROXIMATION 

Approximate Xn(q) by normalized WKB wavefunctions 

Xn,,(q)=(; a!~r/2 (k,,~q») 1/2 sin(S,,(q) + 1T/4) , 

with 

JQ 2 ( ) (1 + 1/2)2) S,,(q) == Q 1 k,,(ll) dll, k ll (ll) = 2 En' - V(q - 2if . 

(8) 

(Thus ql is the outer turning point, while En' is specified 
by the Bohr-Sommerfield quantization rules.) 

Then, 

,/ / 
1 aEnJ 1 

Xnl(q+z, 2)Xn,(q-z" 2)=--~--k ( )cos(k"q). 
1T un II q 

P., 

(9) 

FIG. 2. Coordinate system used for the approximate evaluation 
of the Wigner function. 
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Eground o E 

FIG. 3. The cross-hatched region gives the region of integra
tion. The upper boundary is the boundary between the classi ... 
cally permitted and excluded regions. 

Inserting this in (7b), linearizing S,,(q), and neglecting 
fast oscillating terms in q, we obtain 

Fnl(q,p)-= O:~I o[ip~ - ik~(q)] 

giving (7a) as 

(10) 

fWKB(P, q) -= 6 nl (2!P O(~ - ik~) 0(1 + i - p~q). (11) 

Replace the sums with integrals and define the limits of 
the integral so that En < EF• Since X"I is zero in the clas
sically excluded region, q should be restricted to lie in 
the classically permitted region. The first restriction 
is accomplished by inserting the step function e(EF - E), 
while the second restriction is secured by inserting the 
step function e[E - (l + 1/2}/2q2 - V(q)], which makes kll 
positive or zero; e(t) -= 1, t> 0; e(t) -= 0, t < O. The 1 in
tegration can be immediately performed, resulting in 
the substitution of p~q for (l + 1/2) in the integrand. We 
obtain this way 

fWKB(P, q) == (2!pl: dEo[i~ - (E - ip~ - V)]e(EF -E) 

== (2!P [ dEF;[R(p, q) - E]e(EF - E) 

1 
== (27T)3 e[EF -H(P, q)], (12) 

which is the usual Thomas-Fermi result, H(p, q) being 
the classical Hamiltonian. 

IV. AIRY APPROXIMATION 

The WKB approximation used in (8) breaks down at 
the classical turning points. However, in the vicinity of 
a turning point we may use, after Langer and others, an 
Airy type approximation for the wave function; this gives 
the WKB approximation far from the turning point and 
goes smoothly through the turning point itself. This ap
proximation is given by 
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Xnl(q) ==( O:~I r2(k~,Y 12(3S I/2)1/6 Ai[( - 3S/2)2/3] (13) 

normalized in such a manner as to give the WKB func
tion in the interior [1. Eq. (3)], 

The so resulting Fnl has been evaluated in I 

OEnl . r. (.1. 2 1 (I + 1/2)2 V() E)~ 
Fnl == -an O'IiAl LO''' zp" + z q2 + q - IJ' 
0',,==25/3(3S,,/2)2/3/k~. (14) 

[Compare with integrand in 1. Eq. (7), substituting there 
for V, V + (I + 1/2)2/2q2, and multiplying the result with 
aEnion to change the normalization. ] 

If we substitute (13) into (7a) and change the summa
tion into an integration, we find that 

f(P, q) == (2!)3 f dl fdEO'"Ai [0'11 (i~ + i (I +;/2): V - E) ] 

x 0(1 + 1/2 - PJ.q). (15) 

The integration is extended over the cross-hatched re
gion in the E, I plane as given in Fig. 3. The boundary 
curve 1 -= l"(E) gives the maximum angular momentum 
possible for a given E. These values can be easily found 
from a potential energy diagram (Fig. 4) in which we 
plot V + (I + 1/2)2 /2q2 against q for several values of l. 
Given an E line, that I will be the 1M (E) associated with 
this E whose potential curve just touches the Eline. 

We proceed now to analyze the integrand and show (a) 
the slowly varying scale factor can be approximated by 
a constant and (b) the integrand is exponentially small 
around the 1 == 1 M(E) curve which enables us to extend the 
limits of the integration. Consider q, P, and 1 fixed, 
and investigate the variation of the integrand with E. 
The function Ai(t) is oscillatory for t < 0 decaying expo
nentially for t> 0; it exhibits a maximum near t=-1. 
As discussed in I (p. 142) 0'11 is a slowly varying function 

q 
E 

FIG. 4. Potential energy diagram defining 1M , 
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of E, hence we can replace it by its value at the maxi
mum of Ai, denoted by 0"''(1)' If we put the argument of 
the Ai function equal to zero, we find the equation of that 
curve which separates in the E, 1 plane the decay region 
from the rest. Considering p" and q fixed, this gives an 
leE) curve which lies below the 19(E) curve since lM 
gives the maximum value of [ permitted for a given E. 
This curve is given by the broken line in Fig. 3. Simi
larly, the Airy function will be exponentially damped if 
the energy is below the ground state energy. Conse
quently, we can extend the domain of integration over 
the quadrant E<EF , [>0 with a small error. Inter
change the order of integration and introduce in place of 
E the new integration variable 

(
1. 2 (l + 1/2)2 V() E) 

t= 0""(1) '2P" + 2! + q - • 

We immediately obtain 

11'" . f(P, q) = (2 )3 dt Al(t), 
71 (H-EF ) ",,(1) 

(16) 

with R(p, q)= i(P~ + Pi) + V = iP2 + V. 

This is of the same form as the one obtained in I for 
the one-dimensional problem, replacing the one-dimen
sional weight (271t! with the three-dimensional one 
(271 t3. Thus the detailed analysis of this expression pro
vided in I (and summarized in the Introduction) serves 
for the present case as welL 

V. OSCILLATOR MAPPING 

In (7b) the wavefunctions X.,I have two turning pOints 
if l"* 0, and consequ'ently their approximate form can be 
found by mapping the radial part of the Schrodinger equa
tion onto the wave equation associated with the harmonic 
oscillator potential, i. e., the parabolic cylinder equa
tion, (I, Sec. V). 

The following differences arise if we compare the one
dimensional case discussed in I with the present prob
lem. (a) In the one-dimensional case, the mapping func
tion z.(x) (mapping the coordinate x of the actual equation 
onto the coordinate of the parabolic cylinder equation z) 
contained only the quantum number n, labeling the en
ergy associated with the wavefunction to be mapped. 
Here the mapping function t./(r) depends both on the ra
dial and azimuthal quantum numbers. (b) In the one
dimensional case, the Wigner transform introduced the 
variable q; here the q appearing in the argument of F'I 
is the magnitude of the vector q. Once these alterations 
are noted, the results of I immediately carryover and 
we find 

F ( ) "," (' )-2 1 ( ). [2(2(HI - En)\ 
.r q,P" =L.J., W.1 tn' 4713 -1 exp - (t~l)2 1 

/ ~ r (2(H I -En) / ~J 
+n+ 12J LnL4 (t~I)2 +n+12) 
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where wnl =: aE./an and HI =: i~ + [(Z + 1/2)2j2q2] + V(q). 

The summations can be approximately evaluated using 
the following observations to simplify the limits. The 
function exp( - t/2)L.(t) is oscillatory for small t and de
cays exponentially for large t. Between these two re
gions is the turning point region where the function can 
be approximated by an Airy function. Hence in this re
gion the considerations of the previous section on lM ap
ply and we can extend the limits of the 1 sum from 1 to 
infinity, while the n sum can be formally converted into 
an integration over E from - 00 to EF • The 1 sum then 
simply substitutes p~q for 1 + 1/2. This converts 11 into 
the Hamiltonian tp2 + V(q). The n sum can now be ap
proximately evaluated as in I and we finallY obtain 

1 f'" f(P,q)=:(-1)N(2 ~3 dtexp(-t/2)L~1)(t), 
71,., .4J(Hl 12Th 

(17) 

where J(R) is the classical action evaluated for that en
ergy E which is the value of the Hamiltonian for the p, 
q point in question. [see Eq. (21) of I], 

VI. CONCLUDING REMARKS 

Two semiclassical approximations to the Wigner func
tion in six-dimensional (p, q) space have been developed 
for the problem of fermions in a spherically symmetric 
potential welL Equations (16) and (17) are the final re
suits of these approximations. Similarly to the one-di
mensional case,! the Wigner function oscillates in the 
vicinity of the boundary separating the classically per
mitted and excluded regions of phase space. The ex
trema of the oscillations lie on constant energy surfaces. 
In the classically excluded region the Wigner function 
falls off exponentially. When the classical limit is taken 
the expressions (16) and (17) approach the Thomas
Fermi distribution. 

In a recent article Lieb and Simon2 have broken down 
the spatial density distribution into five regions. It is 
interesting to speculate that the transition region de
scribed by them can be described by our results. The 
behavior of the spatial density formed by integrating 
f(p, q) over p can be quite complex. 
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Baker-Campbell-HausdortT fonnulas can be constructed simply by matrix multiplication. Examples 
are given. 

I. INTRODUCTION 

Baker1-CampbeIl2-Hausdorff3 (BCH) formulas4- 8 pro
vide a powerful and elegant tool for solving many prob
lems9- 16 of physical interest. However, the complexi
ty17-19 of the usual expansions for Z(X, y), where eXeY 

== eZ<x, Yl, has prevented even more widespread applica
tion of these formulas. The operator Z(X, Y) can be com
puted simply and in closed form by matrix multiplication 
whenever X and Yare operators in a finite-dimensional 
Lie algebra. The procedure appears to be not widely re
cognized. This is very surprising, since both Baker20 

and Hausdorff21 pointed this out explicitly in their ori
ginal works. In the following sections we give several 
examples of the matrix construction of BCH formulas. 

II. EXAMPLES 
A. Example 1 

Within the context of the Foldy22 model of a super
fluid23 system, the ground state wavefunction is a direct 
product of single mode states n Ilj!k)' where 

and the operators are as defined by Solomon. 24 The bi
linear products of boson operators brb!k' bkb.k, i(blbk 
+ b:kb'k + 1) obey su(1, 1) commutation relations, 9,24 and 
have a faithful 2x2 matrix representation: bZb!k
M12 ,bkb·k- -M2l1 i(btbk + b!kb'k +1)- i(M11 -M22 ), 
where Mij is an nXn matrix with + 1 at the intersection 
of row i and column j and 0 elsewhere, and with n '" 
max(i,j). By simple matrix mutiplication it is possible 
to verify25 the 2 x 2 matrix equation 

exp[- i8(M12 +M21 )] 

=exp(-tanhi8M12)exp{(-2In coshi8H(M11 -M22)} 

xexp[tanhi8 (-M21 )]. 

This BCH formula is valid for the bilinear boson pro
ducts (since it is valid for their faithful matrix repre
sentatives), and can be used to construct26 ,27 the single 
mode ground states, which are coherent states13,28: 

I ~(k» == exp[ - tanh~8 (k)btb!k] It) 
x exp{[ - 2ln cosh i8(k)]( - j)} 

_{ h1.8(k)12j~ (n!r(n-2 j ))1/2[-tanhi8(k)]" Ii) 
- cos 2 J ~ r(O _ 2j) n! " , 

(1) 

where - 2j == I t:.k I + 1 == 1, 2, . .. describes an irreducible 
representation24 of SU(1, 1) and the nonnegative integer 
I t:.k I == I nk - n'k I is the difference between the number of 
bosons in modes k and - k. 
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B. Example 2 

The number, creation, annihilation, and identity op
erators29 n == at a, at, a, and I == [a, at] have a faithful 
non-Hermitian 3 x 3 matrix representation30: r(n) ==M22, 
r(at)==M23' r(a)==M12 , r(!)=M13• The product 
exp{Nata}exp{Rat + La} can be computed in this represen
tation and is found to be 

!i1 ==exp{NM22}exp{RM23 + LM12} 

~1 L iLR~ 
== 0 eN eNR • 

o 0 1 

A Similarity transformation can be performed on!i1 
which brings it to the form 

S!i1 S'l == exp(NM22 + DM1S) , 

(2) 

(3) 

where S==exp(rM23 + lM12) , r=R(1- e'N)'l, l==L(1- e+N)'I, 
and D == - iRL coth ~N. 

Since this calculation is valid in a faithful 3 X3 non
unitary group representation, it is valid in all represen
tations. In particular, it is valid in the infinite -dimen
sional unitary representation carried by the Hilbert 
space spanned by the harmonic oscillator eigenstates 
In), where ataln)==nln). In this representation, 

Tr[exp(Nata) exp(Rat + La)] = Tr[exp(Nata - ~RL cothiN!)] 

(4) 

For the thermodynamic average (exp(it:.k 'X)Th with re
spect to the Hamiltonian H == fiwat a, we set N == - {3fiw, 
it:.kx == it:.k (fi/2mw)1/2(at + a) and we recover the 
Debye31 -Waller32 factor exp[ - ~(t:.k)2«t:.x)2)], where 
«t:.x)2) == (1i/2mw) coth~{3fiw is obtained by considering 
(exp(it:.k . x) as a thermodynamic generating function. 
The notation is standard. 11,12 

C. Example 3 

With the notation as in Example 2, 

exp[r(Nata+Rat +La+D!)] 

~ 
L(eN -1)/N D+LR(eH _l_N)/NZ) 

== 0 eN R(eN -1)/N . 

o 0 1 

(5) 

The product of two such group elements30 is a group ele
ment and may be expressed in the form (5). In fact 

exp[r(Nata+Rat +La+D!)] 

xexp[r(TJata + pat + Aa + Ii!)] 

==exp[r(N'ata+R'at +L'a +D'!)]. (6) 

The parameters N', R', L', D' can be computed Simply 
by matrix multiplication. All the usual exponential op-

Copyright © 1974 American Institute of Physics 2090 
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erator products for the harmonic oscillator can be de
rived in this way. 

The trace of the group element on the right-hand side 
of (6) can be computed in the infinite-dimensional uni
tary representation following the procedure described 
in Example 2: 

Trlexp(Nat a + Rat + La + D1) exp(l1at a + pat + Aa + 01)] 

= eDN 
(1 - eN +7Jf\ Re{N + 1j) < O. 

(7) 

This generating function possesses all the expected sym
metries and contains all the familiar generating func
tions as special cases or limits. 

III. COMMENTS 

10 The matrix construction of BCH formulas discus
sed by Baker20 and Hausdorff2~ 

(8) 

is valid in the regular or adjoint9 representation. It is 
generally possible to find smaller n x n faithful matrix 
representations r(nl of a Lie algebra (n < dim algebra) 
in which the computation is easier. This procedure was 
used in all three examples above. Under certain condi
tions33 this smaller representation may fail to define 
Z(X, Y) at all. Under these conditions the adjoint repre
sentation must be used. When the operator Z(X, Y) con
structed in the adjoint representation is not defined uni
quely by the (algebraic) matrix equations, continuity 
(topological) arguments can be used to define Z(X, Y) 
uniquely. 

2. Mutually commuting generators of nonsemisimple 
groups cannot generally be simultaneously diagonalized 
in a finite dimensional representation [e. g., r(at a) 
=M22 , r(1) =M13]. However, in a unitary representation 
acting on a Hilbert space representing physically real
izable states, mutually commuting generators will al
ways be simultaneously diagonalizable. 

3. If g is a Lie algebra of nXn matrices with R, 5, T, 
U, ••• E g and if a is the n x 1 column vector col(au 
a2 ••• , an) and at is its Hermitian adjoint, where the op
erators ai' aj obey [ai' aj] = 0ij' [a., aj] = 0= raj, a;], then 
it is an easy matter to show34 that (atRa, atSa] =at[R, S)a. 
The Lie algebra of bilinear operator products of the 
form atga is isomorphic with the matrix algebra g itself. 
Thus, if the matrix equation exp(R) exp(S) =exp(U) is 
valid, so also is the operator equation exp(at Ra) 
Xexp(atSa) = exp(at Ua). This observation has been used 
to construct the angular momentum algebra su(2) and 
its properties, 35 the representations of SU(n), 36 co
herent states for multilevel atomic systems, 14 and 
ground states for superfluid27 and superconducting37 
systems. 

4. If H (Hamiltonian) is an element in a finite-dimen
sional Lie algebra g spanned ~y generators Xi' i = 1, 
2, "', n, then Tr e- 8H n exp( ,,'Xi) is a thermodynamic 
generating function that can be used to compute all mo
ments of the operators Xi' and expectation values of op-
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erator products in arbitrary order. The trace may be 
computed in a simple faithful finite-dimensional repre
sentation rf(expg); it is an analytic continuation of a 
character38 function x(f, {jH, a). In the Hilbert space on 
which H acts through rA(H), Tr e- flH nexp(aiXi ) is the 
analytic continuation of the character function X(A, flH, a). 
When g is semisimple, x(f, {jH, a) uniquely determines 
x(A, {jH, a); when g is compact, all characters are 
known. 39 For example, when g= su(2), the first and sec
ond moments of InX(j, (3H, a·J) give the parallel40 and 
transverse Brillouin functions when [{jH, a . J] = 0 and 
({JH, a • J) = 0, respectively. 41 

IV. CONCLUSION 

We have repeated an observation made over sixty 
years ago by Baker and Hausdorff: That is, that a BCH 
formula for Z(X, Y) can be constructed simply by matrix 
multiplication in the adjoint representation when X and 
Y belong to a finite-dimensional Lie algebra. This con
struction has been illustrated by application to several 
examples of physical interest. Some implications and 
caveats were discussed. 
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By considering a model field equation that contains the acausal propagation features of a spin 3/2 
field we show that depending on the "external field" one can either have weakly retarded 
fundamental solutions or not. 

I. INTRODUCTION 

It is by now clear from the work of Velo and 
Zwanziger1 and Shamaly and Capri2 that for a fieW of 
spin 3/2, acausal propagation must result if this field is 
coupled in a gauge-invariant manner to an externally 
applied electromagnetic field F. Thus, the characteris
tic determinant for a Rarita-Schwinger spin 3/2 field 
minimally coupled to an electromagnetic field contains 
a factor 

n2 + ~(Fdn)2 =n~(1- ~B2) _n2 _ g2[(nx E)2 - (n· B)2]. (1) 

Clearly in any region of space-time where B* 0 
acausal propagation occurs and an equation with such 
characteristiCS cannot have strictly retarded or ad
vanced fundamental solutions. The term strictly re
tarded (advanced) is used to mean that the support of the 
fundamental solution is contained in the forward (back
ward) light cone. 

It was this lack of strictly retarded (advanced) funda
mental solutions that motivated Wightman3 to introduce 
the concept of weakly retarded (advanced) fundamental 
solutions. He furthermore Showed that if such weakly 
retarded (advanced) fundamental solutions exist then it 
is pOSSible, in spite of the nonlocal nature of the field, 
to formulate a satisfactory scattering theory for the 
coupled field equation. It thus is of interest to study the 
existence of weakly retarded (advanced) fundamental 
solutions for equations with this acausality property. To 
initiate this study we have constructed a model equation 
which has these properties and is nevertheless exactly 
soluble. 

II. THE MODEL 

A field equation of the form 

( ) a2l}! 1 ( ) al/! (2 2) 0 I t,x at2 + 2" It t,x at - V -m 1jI= (2) 

has the acausality properties mentioned previously. 
Here l(t, x) may be thought of as (1 - ~B2). The term 
It(t, x) = (a jat)/(t, x) is added to make the equation solu
ble. We furthermore assume that l(t, x) is C~ and that 
fit, x) -1 as t - ± 00 or 1 x 1- 00. This is analogous to as
suming that B vanishes for large 1 X 1 and I t I . There are 
two separate cases to conSider depending on whether 
I(t, x) > 0 or else if there is a region for which I(t, x) <0. 
We consider these cases separately. 

Case l:/(t,x) >0 

In this case Eq. (2) is strictly hyperbolic and we can 
further subdivide the problem according to whether 
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I(t, x)?!- 1 or not. The reason for this is that the normals 
to the characteristic surfaces n,.. are given by 

I(t, x)n~-n2=0. (3) 

So for fit, x)?!- 1 the normals are spacelike or lightlike 
and the characteristic surfaces lie inside the light· 
cones. Thus the elementary solutions in this case are 
strictly retarded or advanced. For 0 <Jet, x)~ 1 in some 
region we find that weakly retarded (advanced) funda
mental solutions exist, but they are not strictly retarded 
(advanced) . 

Case 2:j«, x) <0, a(x)<t<b(x) 

In this case the equation ceases to be hyperbolic in 
the region between the hyperplanes t = a(X) and t = b(x) 
and not even weakly retarded (advanced) fundamental 
solutions exist. 

III. PROOF OF EXISTENCE OF WEAKLY RETARDED 
FUNDAMENTAL SOLUTIONS 

Since the case Jet, x)?!- 1 falls in the class of well
established results we assume specifically that 0 </(t, x) 
~ 1 such that limt_~/(t, x) = 1. Then as stated before, 
the characteristic surfaces lie outside the light cones 
and are asymptotically parallel to the light cones. 

We begin by recalling the definition of weakly re
tarded. 3 Since the argument for the weakly advanced 
fundamental solutions is identical to that for the weakly 
retarded, we restrict ourselves henceforth to the re
tarded case. 

Delinition: Let gl(X), g2(X) E 5(4) the space of CO func
tions of four variables of rapid decrease, then a funda
mental solution GR(x; y) is weakly retarded if for every 
positive integer n and every vector l not in the future 
light cone 

iff gl(X) GR(x + Tl; y)g2(Y)cr xd4y I,;;; C{g!l~';' l) (4) 

for some constant C(gll g2' n, l). 

This is an asymptotic form of the notion of retarded. 
Clearly, GR is weakly retarded if any vector not in the 
future light cone when extended to infinity eventually lies 
outside the support of GR. We shall now show that this is 
indeed the case if j(t, x) > 0 and limt_ .. j(t, x) = 1. 

To find the "retarded" elementary solution of 

I(t, x) a:~ + ~ It(t, x) ~~ - (V _m2)G= o(t -t') o(x -x') 

(5) 
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we begin by defining In analogy to Eq. (6) we now define 

(t ds 
T=T(t, x)=)o [j(s,X)1l/2' (6) T=dt,x)=a(x)+ (t [ (dS)]l/2' fort<a(X), 

)a(x) j s,x 
(16) 

T is then a monotone increasing function of t and there
fore, since f (t, x) is Coo, has a unique COO inverse h. 
Thus 

f=h(T, x). (7) 

Differentiating with respect to f yields 

1 =hTTt =hT[j(t, x)rl/2 

so that 

iJhjOT=hT= [j(t, x)11/2. 

Changing variables from t to T Eq. (5) becomes 

(oG/2T2) - (V2 - m 2)G = 6[h( T, x) - h( T', x) ]6(x - x') 

or 

The "retarded" solution is 

GR(T,T';X,X') = [hT(T, X)j-lt..R(T-T', x-x'), 

(8) 

(9) 

where t..R is the usual Klein-Gordon retarded Green's 
function. Changing from T, T' back to f,t' we get 

GR(t, t'; x, x') = Lf(t, x) 1-
1/2 t..R(f~ [f(s ~~)]1/2 , X - x). 

(10) 

Choosing t' = 0, x' = 0, the support of this GR is the for
ward cone with vertex at the origin and defined by 

f [j(s~~)Y/2 =Ixl· (11) 

As stated before, in order that GR be weakly retarded it 
is sufficient that any point with t=(l-E)a, Ixl =a 
(0 <E <1) should be outside the support of GR for a- 00. 

This is achieved if 

~!~([(l-E)la [j(s~:)]l/2 -a]) <0 

or equivalently if 

~!~([~ la[j(s~:)]l/2J) < 1 ~E' 
Using L'Hopital's Rule this condition becomes 

1 
lim[j(a, x)j-1/2 <-
a~.. 1 -E 

(12) 

(13) 

(14) 

which is true since lima~ .. f(a, x) = 1. Thus in this case 
we have a weakly retarded fundamental solution which, 
for f(t, x) < 1, over any open domain, is clearly not a 
strictly retarded solution. 

IV. LACK OF WEAKLY RETARDED SOLUTIONS 

In this case we assume that f(f, x) is negative over the 
hypervolume a(x) < t < b(x) with Simple zeroes on the 
hyperplanes t = a(x) and f = b(x). Thus 

f(t,X) >0 for t < a(x) or t> b(x), 

f(f,X)<O for a(x)<f<b(x), (15) 

f (t , x) = 0 for t = a(x) or t = b(x). 
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(! ds 
T = T o(t, x) = a(x) + ) a( x) [ _ j (s , x)]I 12 ' for a(x) < t < b(x), 

(17) 

f t ds 
T=T+(t,X)={:l(X)+ [j( )]II 2 , fort>b(x), 

b(X) s,x 
(18) 

where 

f b(X) ds 
(:l(x)=a(x)+ .(x) [_j(S,X)]I/2° (19) 

And a(x) is determined by the value of T at t = O. 
if a(x) < 0 b(x) we can choose 

Thus 

1. 0 ds 
a(x) = - [-f( )]1/2 

.(x) S,X 
(20) 

and then T=O for t=O. Similarly if 0 <a(x) we choose 

f. 0 ds 
a(x)=- [j( )]1/2 

.(x) S,X 

and for 0 > b(x) we choose 

f. b(X) ds f.0 ds 
a(x) - [-f(s X)]1/2 - [(s X)]l/2 

.(X) , b(x) , 

All this is really equivalent to chOOSing 

T = fat [I j (s ~~) I ]I 12 . 

Thus the functions a(x), (:l(x) are so chosen as to make 
T(t, x) continuous in t with T( 0, x) = o. Again T ± and To are 
real, monotone Coo functions of t, in their respective 
domains of definition, and therefore have unique mono
tone Coo inverses. Thus 

t=h(-)(T,X), for T <a(x), (21) 

f=h(O)(T,X), for a(x) < T < (:l(x), 

t = h(+)( T, x), for T > (:l(x). 

Taking partial derivatives with respect to t yields 

(22) 

(23) 

OOT h(±)( T, x) = h~( T, x) = [j(t, x)]-ll 2, T < a(x) or T > (:l(x), 

(24) 

...£.. h(O)( T, x) = hT( T, x) = [- j(t, x)]-1/2, a(x) < T < (:l(x). (25) 
oT 

The equation for the Green's function now becomes 

O;~i _(V2_m2)G_=(h~-»-16(T-T') 6(x-X'), T<a(x), 

(26) 

o2GO +(V2+m2)G =_(h(0)r16(T_T') 6(x-X') oT2 0 T , 

.a(x) <T<{3(x), (27) 

o2G2+ _(V2_m2)G =(hT(+»-16(T-T')6(x-x'),T>{3(X). 
oT + 

(28) 

To obtain the matching conditions at T = a(x), T = (:l(x) 
we integrate Eq. (5) from t=a(x) -E to t=a(x) +E [also 
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b(x) - E to b(x) +E] and take the limit € - 0 for t* t', X 
* x'. Recalling that the zeroes in j(t, x) are simple we 
have that in the vicinity of t = a(x) [t = b(x) 1 that 

j(t,x)<>< [t -a(x)]jt[a(x),x] 

{respectively, fit, x) "" [t - b(x)l!t[b(x) ,x]}. This leads to 
the conditions 

lim [G.(t, t'; x, x') - Go(t, t'; x, x')] == O. 
t· bIz) 

This in turn implies that 

lim [G.(r, r';x,x') - Go(r, r';x,x')]=O, 
'1''' a (x) 

(29) 

(30) 

(31) 

lim [G.(r, r';x,x') - Go(r, r';x,x')]=O. (32) 
T· 8(z) 

It is implicitly understood here that t (respectively, r) 
approach their limits from inside the domain of defini
tion of the functions involved. Furthermore since the 
various G's diverge like reCiprocal square roots at the 
zeroes of jet, x) [see the solutions Eqs. (34), (35), and 
(36)] the above relations do not imply the continuity of G. 

We shall now show that the set of equations (26), (27), 
and (28) subject to the matching conditions (31) and (32) 
have no weakly retarded solution. The most general 
solutions of (26), (27), (28) are 

where 

GR ( r, r'; x, x') = U(t, X)]-1/2 AR( r - r' ,x - x'), 

Gol r, r'; x, x') = 21Tm[ - j(t, X)]-1/2 

x K1{m[(r- r')2 +(x -X')2]I/2} 
[( r - r')2 + (x - X')2]1/2 

where c, d are constants. 
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(33) 

(34) 

(35) 

(36) 

(37) 

To obtain a weakly retarded solution requires that 
c :::: d:::: 1. Otherwise we always have asymptotically a 
superposition of strictly advanced and retarded funda
mental solutions. It is, however, impossible to achieve 
c = 1 or d = 1 since with say c:::: 1 and the point 
(r' - r', x - x') in the past light cone G _ vanishes. On the 
other hand, Go * 0 in any finite domain. This makes it 
impossible to achieve the conditions (29) or (31). Simi
larly with d = 1 G. vanishes for any point (r - r', x - x') 
in the past light cone and therefore for the same reason 
as before the solutions G. and Go cannot be matched 
according to (30) and (32). Thus not even weakly re
tarded fundamental solutions exist. 

V. CONCLUSIONS 

We have studied a differential operator of the form 

j(t,X)a~: +~jt(t'X):t _(V
2
_m

2
) 

where j(t, x) is C~ and approaches 1 for large I t I or 
I xl. This operator contains the essential features of 
acausality expected in the wave operator for a spin 3/2 
field coupled to an external electromagnetic field that 
vanishes for large It I or Ixl. The main propagation 
properties of this operator depend on j(t, x) and fall into 
two categories expressed in terms of the fundamental 
solutions. 

(1) If j(t, x) > 0 and j(t, x) - 1 for t - ± 00 then weakly 
retarded and advanced fundamental solutions exist. 
These solutions are furthermore strictly retarded and 
advanced, respectively, if j(t, x)::" 1. 

(2) If for some open hypervolume a(x) <t <b(X), j(t,x) 
<0 then not even weakly retarded or advanced fundamen
tal solutions exist. 
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1m [SO(n) ® SO(m)] => SO(n,m), 
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We discuss a class of deformations of the inhomogeneous classical algebras im [k(n) G;l k(m)] to 
k (n,m) for I .;; m .;; n. This generalizes the previously known expansions i k(n) ~ k(n, U. As the 
title indicates, this is done explicitly for the orthogonal, unitary, and symplectic cases. We construct 
the corresponding deformed groups K (n ,m) as multiplier representations on the space of functions 
over the rank m coset space K(n -m)\K(n). This method allows us to build a principal series of 
unitary representations of K (n ,m). The contractions of the deformed algebras and groups are 
considered. 

I. INTRODUCTION 

The concepts of expansion and deformation of a Lie 
algebra are being actively developed in the mathematical 
physics literature. The motivation in studying this sub
ject is twofold: first, it is, loosely speaking, the in
verse of contraction and second, it allows one to build 
dynamical algebras for systems whose symmetry alge
bras are realized as a set of operators acting on a de
finite homogeneous space. 

The first deformations treated were iso(n)=>so(n,1),1 
i[u(n)eu(1)] => u(n, 1),2 and i[sp(n)e sp(1)] => sp(n, 1),3 
and their noncompact versions, 4 which constitute a fam
ily shown by Gilmore5 to have a rank 1 coset space in 
the Cartan decomposition. 6 These deformations were 
constructed by the use of an algorithm in which the non
compact generators are produced by commuting the 
Casimir operator of a classical algebra with an element 
of a normal Abelian algebra transforming as a vector
a rank 1 tensor. A second family was treated in Ref. 7, 
which uses the algorithm with an Abelian algebra trans
forming as a second-rank symmetric tensor under the 
classical algebra. This produced the deformations of 
representations of i 2so=> sl(n,JR), i~(n)eu(1)=>sl(n,CC) 
eu(1), and i~p(n)esp(1)=> sl(n,Q)esp(1), which can 
only be realized on a rank 1 homogeneous space. As an 
example, for the hydrogen atom system where the sym
metry algebra is so (4) and the homogeneous space is the 
3-sphere projected out of momentum space, the first 
kind of deformation yields so(4, 1)8 as a dynamical alge
bra while the second kind yields sl (4,JR). 9 

In Sec. II we show that the first family of deformations 
can be generaliZed by considering an Abelian ideal trans
forming as a set of m orthogonal vectors and gives rise 
to the deformations 10 im[so(n)EBso(m)]=>so(n,m), 
im[u(n) EB u(m}] => u(n, m), and im[sp(n)EB sp(m)]=> sp (n, m). 
We will see that the set of vectors x~ forming the 
Abelian ideal is also isomorphic to the rank m homo
geneous spaces, respectively, SO(n - m)\SO(n), 
U(n - m)\ U(n), and Sp(n - m)\Sp(n) for 1.,; m"; n, and con
tains the first family mentioned for the special case m 

= 1. To the best of the authors' knowledge, this is the 
first application of the above deformation algorithm to 
coset spaces of rank greater than one. A quite different 
expanSion, however, has been given by Mukunda. 11 

Corresponding to deformations of Lie algebra repre
sentations there are deformations of representations of 
the Lie groups12 which gives rise to multiplier repre
sentations of the type developed by Bargmann13 and 
Gel 'fand and collaborators, 14 and generalized by 
Mackey. 15 The deformations ISO(n) => SO(n, 1 )16 and 
IU(n)0 U(I) => U(n, 1)17 realized as multiplier represen
tations on the real and complex spheres have been used 
to find the unitary irreducible representation (UIR) ma
trix elements of the principal series of the SO(n, 1) and 
U(n, 1) groups and have also been applied to the supple
mentary series1B of the former. This method has been 
further used to develop a complete solution to the "miss
ing label" problem in the noncanonical chain reduction 
SO(n, 1)::) SO(1, 1)0 SO(n _1).19 The corresponding group 
representations for the second family of deformations 
has also been developed. 7 

In Sec. ill we carry the deformation over to the cor
responding groups and study the "nonrigid" action of the 
deformed group on the rank m homogeneous spaces, and 
show that one can thus obtain a principal series of UIRs 
of the deformed group. In Sec. IV we touch upon the in
verse problem of contraction. 20 

II. DEFORMATIONS OF THE CLASSICAL ALGEBRAS 

A. General construction 

Consider the classical Lie algebra k(n), which can be 
so(n), u(n), or sp(n), the metric-preserving algebra of 
the sphere S~1 on a field IF, i. e., the real JR, complex 
.CC or quaternionic Q fields, respectively, given by x".x". * 
-= 1, where the asterisk * stands for the involutive auto
morphism of the field, identity for JR, complex conjuga
tion for CC and quaternionic conjugation for Q. Summa
tion over repeated indices is implied and all middle 
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Greek letters range from 1 to n. The dimension of S:;-1 
is n dim IF - 1. Let the index w range over the corre
sponding components of the field IF, 1. e., w:= 0 for 1R, 
w = 0,1 for <I:, and w = 0,1,2,3 for Q. The n dim IF quan
tities xI" w transform as the components of a vector un
der commutation with the elements M~v of k(n) and can 
be adjoined to them to construct the inhomogeneous clas
sical algebra ik(n), semidirect sum of k(n) with an 
[n dim IF]-dimensional Abelian ideal. It has been 
known l

-4 that out of the xI" wand the second-order Casi~ 
mir operator >Itk = tM~~~v of k(n) one can build the n 
dim IF operators 

(2.1) 

which are elements of the enveloping algebra of ik(n). 
We can verify that together with the generators of ken), 
they close into a k(n, 1) algebra [so(n, 1), u(n,l), and 
sp(n, 1), respectively, in the last two cases, though, one 
has to add6 to the former set the commutator between 
two operators (2.1), producing u(l) and sp(l) subalge
bras which commute with the original compact ones]. 

We now introduce the action of the algebra k(n) on a 
set of mn-vectors xI"" (a = 1, ... ,m). Such vectors can 
be taken as orthonormal since k (n) commutes with the 
vector space scalar product X I" "x" a*. We introduce the 
constraints 

(2.2) 

Such a choice of vectors can be conv~niently thought of 
as an n x m rectangular matrix which is a submatrix of 
the nX n matrix self-representation of the Lie group gen
erated by k(n). Equation (2.2) represents ~m(m -1) 
xdim IF + m restrictions since x~x~* = (x~x~*)* and x~x~* 
is real. The number of independent components of the 
matrix x is thus m[(n - Mm -1}) dim IF -1]. The nm dim 
IF quantities xI" "w, however, can form the generators of 
an Abelian algebra which, when added in semidirect sum 
to k (n) produces what we shall call the imk (n) algebra. 
Our algorithm now generalizes (2. 1) in constructing the 
operators 

(2.3) 

Moreover, building the commutators [M~,n+'" M~:n+a], we 
see that we still obtain some extra operators M::~,n+a 
which close onto a k(m) algebra commuting with the ori
ginal k(n), and all of these, together with (2.3) form a 
k(n, m) algebra. The free parameter T, it has to be 
noted, must be the same for all M~,n+" (i. e., it cannot 
have indices Il, a, or w), or the resulting operators will 
not close onto an algebra of finite dimension. We will 
now write the results for the classical groups consider
ed, using for consistency the relations as presented in 
Ref. 7. 

B. im [so(n) $ so(m)) => so (n,m) 

The generators of so(n) are MI"v with the commutation 
relations 21 

with gl"v= 0l"V for Il," = 1, ... ,n. The generators of the 
normal Abelian subalgebra are x 1"" (a = 1, ... ,m) satis
fying (2. 2) and 
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(2.5) 

Our deformation algorithm (2.3) now takes the form 

MI',n+,,=t[>Itso'x~] + Tx~=x~Mvl' + (- t[n -1] + T)X~. (2.6) 

Moreover, the commutator of two of the generators 
(2.6) will bring in the generators 

(2.7) 

which close onto an so(m) algebra and commute with the 
M I" v' S verifying that (2. 6), (2. 7), and the M I" v' S satisfy 
(2.4) with gn+",n+a= -O"a (O:,tl=l, ••. ,m). Furthermore, 
one can show that the so(m) subalgebra of generators 
(2.7) acts on the column indices of x~ as 

(2.8) 

i. e., as a vector with respect to the upper index. Notice 
that (2.5) and (2.8), however, have opposite signs. This 
will be shown in the next section to correspond to group 
actions from left and right. 

C. im [urn) $u(m)] =>u(n,m) 

It is convenient to deal with the "complex" form of 
the generators of u(n) given by C I"V with the commutation 
relations 

[CI"V' Cpa]=gvpCI"a-gl"aCpv' (2.9) 

The Abelian generators are zI"" and zI" ,,* satisfying 
(2.2) in its form zl' "z/* = o"a and 

(2. 10) 

(2.11) 

forming the imu(n) algebra. The Casimir operator >It. 
= - 2C I' vC VI' now leads us to write (2. 3) in the form 

CI',n+" = H >It.,z~] + T' z~= - z~C"v + (- tn + T')z~, (2.12a) 

Cn+", I' = - H >Itu , z~*] + T'*z~* = - z~*CVI' + (tn + T'*)z~*, 

(2. 12b) 

and out of the commutators of (2.12) we find 

(2.13) 

which together with (2.12) and the CI"v' s, close onto 
urn, m) with the commutator (2.9). Again we see that 
the z~ and z~* transform as vectors with respect to the 
upper index under (2.13), i. e. , 

[Cn+",n+a,z~]=o""Z! , 

[Cn+",n+a, z',:"] = - OayZ~*. 

(2. 14a) 

(2. 14b) 

Writing z~=x~O+iX~1 and z~*=x~o-ix:1, the "real" 
form of the urn, m) generators can be written as 

~b= Cab - Cba , 

M~b= -i{Cab +Cba ), 

(2. 15a) 

(2. 15b) 

for a, b = 1, ... ,n + m. We can see that the results for 
the so(n,m) algebra become a special case of those of 
the urn, m) algebra when we consider the subset of MO' s. 
Indeed, in the form (2.15) the u(n,m) subalgebra of 
sp(n, m) will become apparent in the next subsection. 
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D. im [sp(n) $sp(m)] ~sp(n,m) 

As the symplectic algebra is not as well known as the 
other two classical algebras, we refer the reader to Ref. 
7 where the explicit form of the generators is given. 
There are two isomorphic sets which we denote by 
{~v,M~:} and {~v,M~~} (i= 1,2,3), which correspond 
to left and right action with respect to quaternion multi
plication. The commutation relations of the sp{n) gener
ators are 

[~ M'" ]-g M'" _g MW +g MW _g MW ILV' PC! - vp,..a ,..p va va p,.. 1Lct""PV' 

[M~v, M~a] =gvpM~. - g ILpM~. - gv,/d!,.. + glL,/d!v, 

(2.16a) 

(2. 16b) 

[M~v,M~.]= -gvpM~.-g,..p~a+gva~,.. +g,..~v (no sum), 

(2. 16c) 

. [M~v,M!a]=EiJk(gvpM~a+g,..pM~.+gv.M:1L +g,..,/d!v)' (2. 16d) 

The normal Abelian subalgebra is generated by x~'" sat
isfying (2.2) which, componentwise, yields X~wA~w=O"B 
and - XOl0;cBi + XOlI XBO _ E XOli:>!:k = 0 The semidirect sum 

,..,.. IL,.. Ii k IL IL • 

algebra imsp (n) is given by (2.18) plus 

[~ xOlw] - 0 x"'" 0 x"'" 
,."", P - ""'.IJ. - IJ.P II :' 

[M~"v,x:O]=±(ovpX~1 - 0ILPx~i), 

[M~"v,X~i]='f(ovpx~o+ 0ILPX~O) (no sum), 

[M~"v,x~i] = Eijk(OV~~k + 0 ILPX~k). 

For this case, the algorithm (2.3) takes the form 

M~~n+Ol= M>I1:p,X~i]+ TX~i 

=X~i~1L 'fx~oM~~ +EIJkX~JMe~ 

(2. 17a) 

(2.17b) 

(2.17c) 

(2. 17d) 

(2. 18a) 

+ (- 2n -1 + T)X~i, (2. 18b) 

and again, from their commutators we extract 

+ (±x~Oxel 'f xlL"ixeO - EiJkX~j ~k)M,.."v, (2. 19a) 

M!!Ol,n+B= (x~Oxel-x~l~oHIJkX~Jxek)~v 

± (x~OxeO - x~j xeJ )M~"v 

+ (±[x~kxel + x~lxek] - Elik[X~OXeJ + x~j xeO])M~~, 

(2. 19b) 

which after some calculation can be seen to close, to
gether with (2.21) and the M:v's, onto sp(n,m). More
over, the Sp (m) subalgebra generated by (2. 19) trans
forms the x~'" as 

[M~+",n+B'~W]= - (oBrX~w - O"1X~w), 

[M!!Ol,n+B,~O]=±(0BrX~1 -O"1~i), 

[M~!",n+B,X~i]='f(OB1X~O-oOl1X~O) (no sum), 

[M!!",n+B,X~J]= -Eljk(0BrX~k - Oa1X~k), 

(2.20a) 

(2.20b) 

(2.20c) 

(2.20d) 

i. e., as the M" s on the column indices, acting from 
the opposite side, tensor- and quaternionwise, on the 
rectangular matrix x~. 

It should be noticed that throughout this section we 
have never used any explicit realization of the algebra 
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generators as operators on a homogeneous space. The 
only restriction has been that in each case we have only 
one continuous parameter T, i. e. , we can deform only 
along one direction. 

III. MULTIPLIER REPRESENTATIONS 

In this section we shall discuss representations of the 
groups K{n,m) whose infinitesimal generators corre
spond to the Lie algebra representations presented in 
the last section. Rather than integrate directly these re
presentations, we construct multiplier representations 
of K(n,m) over the compact homogeneous space X 
={x~ E IF : x~x!= o ",a} by generalizing the projective trans
formations on spheres used previously16, 17 for SO(n, 1) 
and U(n, 1) to projective transformations on X. Since 
such transformations will map X into itself, we are as
sured of the boundedness of the representations. Then 
by an appropriate choice of multiplier functions we ob
tain unitary representations. We then find the infini
tesimal generators by the usual one-parameter subgroup 
method and it is seen that these correspond precisely to 
the formal representations of the Lie algebras k(n,m) 
obtained through the deformation procedure of the pre
vious section. 

A. The group action 

Given a realization of a compact classical group K(n) 
of general element g by an nXn matrix g= IlglLvli, gIL v E 

IF the action of K(n) on the space of infinitely differen
tiable functions over the homogeneous space X can be 
written as 

(3.1a) 

In the case when the field is the noncommutative quater
nion field Q, we have the possibility of a related though 
distinct action7 

,.<*) 
F(x~)- F(X~g;lv*) (3.1b) 

which is still from the left tensorwise, but from the 
right quaternionwise. The action (3.1a) for Sp(n) is gen
erated by the set of operators {M~v,M~:}, while (3.1b) is 
generated by {M~v,M~-v}' For the SO(n) groups (3.1a) and 
(3.1b) are the same and for U(n) we have the complex 
conjugate representation of the group, an involutive auto
morphism of the algebra given by M~v - - M~v' Only for 
Sp(n) is it .necessary to explicitly point out the 
difference. 

In our case there are m orthonormal n-vectors form
ing an n x m rectagular matrix x satisfying (2. 2). Con
sider first the vector x~. Equation (2.2) says it has to 
lie on the unit sphere S:;"1" Now, x~ is orthogonal to it, 
and thus constrained to lie on an S:;"2 sphere orthogonal 
to x~. We follow the process up to x: and thus find that 
the space X is isomorphic with the product of the m 
spheres S:;"l1)9 S:;"21)9 ••• 1)9 S:; -m' This is also isomorphic 
to the homogeneous space K{n - m)\ K(n) since a point 
(xo): = 0 IL Ol has K(n - m) as its stability subgroup. The 
measure d/J.(x) on X is induced by the Haar measure of 
K(n) and is thus invariant under the action (3.1), the 
metric-preserving group of the manifold of K(n). The 
transformations (3.1) can thus be called rigid. 
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B. Nonrigid transformations 

The boost elements of the group K(n, m), whose gen
erators will be shown to be the noncompact operators 
(2.3) [concretely (2.6), (2.12), and (2.18)], are seen to 
produce nonrigid transformations of the space X, i. e. , 
d/J.(x) is not invariant under the general K(n,m) action 
and a multiplier function is needed to obtain unitary re
presentations. 13,14 Furthermore, the multiplier is gen
erated by the inliomogeneous part of the M~, n +" ' s, i. e. , 
additive terms in x~w with no derivative operators. 
Hence we obtain unitary representations of K(n, m) in 
the form 

G 
F(x) - Ta(G)F(x)= /J.a(x, G)F(x' (x, G», (3.2a) 

where G E K(n, m) given by its (n + m)X (n + m) matrix 
representation G and, as will be shown in Secs. III. E 
to III. G. 

(1= - Hn + m)dimIF + 1 + ip, p real, (3.2b) 

and the action of the group on X, x' (x,G), will be given 
explicitly in Sec. III. D. Furthermore, as will be shown 
in Sec. III. F, the multiplier function /J.,,(x, G) enters into 
the Jacobian of the nonrigid transformation as 

d/J.(x') I 12 
J =- d/J.(X) = lJ.a(x, G) . (3.3) 

C. The other rigid transformations in K(n,m) 

The compact generators M:+".n+~ produced out of com
muting the operators (2.3) which close onto the k(m) 
subalgebra of k(n,m) [concretely (2.7), (2.13), and 
(2.19)] will be seen to correspond to the infinitesimal 
generators of a compact K(m) subgroup of K(n,m). It 
was shown in Sec. II that these generators transform the 
upper index of the x~ in the same way (with opposite 
sign) as the original ken) algebra. We let the group ac
tion of K(m) on the rectangular matrix x be from the 
right, i. e. , 

F(x~) !!... F(x~h8")' (3.4a) 

where h=lIh"a" is the mXm matrix realization of hE 
K(m) and, in the case when the x' sand h's belong to the 
noncom mutative field Q, we have corresponding to the 
action (3.1b) 

IX h(*) * 
F(x,.)-F(h8"~)' (3.4b) 

for which the measure on X is again invariant and the 
transformations (3.4), therefore, rigid. Here we shall 
work only with the action (3. 1a) and correspondingly 
(3.4a). The actions (3.1b)~(3. 4b) do not bring in any 
fundamentally new features. 

The space X "'K(n - m)\K(n) is also isomorphic to a 
homogeneous space of the deformed group K(n,m) which 
is elucidated in the Iwasawa decomposition15 K(n, m) 
"'[K(n) 0 K(m)] AN, where A is an Abelian subgroup form
ed by m commuting boosts and N is a nilpotent subgroup. 
Now the stability sybgroup of the point (xo):::= 5 jL OJ can be 
shown12 to be H = KAN, where 

K::=(K6
m

) K'(~-m) ~ ). 
o 0 K(m) 

We can thus write X "'K(n - m)\K(n) "'H\K(n, m). 
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D. General transformations of the homogeneous space 

We shall now give explicitly the boost action (3.2) on 
the n x m rectangular matrix space X, generalizing the 
projective transformations used in Refs. 16 and 17 to 
matrix form. Split the matrix realization of GEK(n,m) 
as 

(3.5) 

where g and hare nXn and mXm submatrices which 
contain the K(n) and K(m) subgroups of K(n,m) and band 
b are rectangular nXm and mXn matrices. We propose 
the action of G on X to be given by 

G -X - x' = (g(-l)X + b(-t) )(b(-Ux + h(-l) r 1 (3.6) 

where g(-l), ••• ,h(-ll are the submatrices of G-l in the 
decomposition (3.5). We emphasize that g(-U , ••• ,h(-t) 
are not the inverses of the submatrices g, ... ,h. 

The action (3.6) is seen to give the correct composi
tion law F(x"(x'(x, G1), G2» =F(x'(x, G1G2» and reduce to 
the action .(3.1a) and (3. 4a) when G E K(n) and K(m), re
spectively. Moreover, it can be verified that (3.6) pre
serves the restricti( 's (2.2) and hence maps the space 
X onto itself. Now consider an infinitesimal transforma
tion through 

G.' hr, «<', wh.,e r~~ :) 

The action on X is then given by 

x' (x, 1 + Er) "'x - €(yx + f3 - X11- xix). (3.7) 

It can be finally verified, after some computation, that 
the infinitesimal generators M in F(x' (x, 1 + Er» 
= (11- EM)F(x) are exactly the homogeneous part of the 
generators of K(n, m) found by the deformation process 
in Sec. II when we use the explicit forms7 

M~v= x,.awo:w _ x~wo~", 

M~'v= ±(x~lo~O +X~io~O _X~Oo~i _X~Oo~i) 

- Eijk (x: j 
O:k + x~j a ~k), 

(3.8a) 

(3.8b) 

where o~w=-%x~w. We have the freedom to add to the 
generators (3.8) a spin part induced by the subgroup 
K(n - m), the centralizer of the boosts. These would 
arise if we consider tensor-valued functions over the 
coset space X. 

E. The multiplier function 

The inhomogeneous part of the boost generators is ob
tained when we consider the full representation (3.2) 
with the multiplier function 

(3.9) 

where the determinant symbol DET of an m X m matrix 
A of in general noncommuting quaternionic elements A",a 
is to be taken as the ordinary determinant of a 2m x 2m 
matrix constructed representing the quaternions in
volved as 2 x 2 submatrices A~v(1a - iA~v(1k> where Uk are 
the Pauli matrices and (10= 1. This construction can also 
be used for the real and complex cases where we have 
A~v for w =- 0 and w 0,1. In these two cases DET A 
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= I det A I 2. Notice that the trace of such a matrix is 
TR A=2A~I-" 

In order to show that (3.9) is the correct multiplier, 
one can verify the corresponding composition law 
j..L (x, Gi)j..L (x'(x, Gi ), G2) = j..L (x, Gi G2) while j..L (x, Gj» = 1 when 
GoE K(n) <81 K(m) and thus for the group identity. Notice 
also that due to (3.6), (3.9) cannot be zero. Again, the 
consideration of infinitesimal transformations yields for 
the multiplier function in (3.2) 

j..La(x,l + Er) ""[DET (1 - E[;9x + 11])]a/2 

""1 - ~m:TR (;9x + 11)= 1 - oe(~)~o<' (3.10) 

Consideration of a particular infinitesimal boost given 
by one ~"" = 1 and all others zero, shows that the coeffi
cient of E is ax~, which is precisely the inhomogeneous 
part of all boost generators seen in the last section with 

a= - -Hn + l)dimIF + 1 + T. (3.11) 

F. The transformation Jacobian 

Having found the multiplier function j..La(x,G) in (3.2), 
we shall show that the Jacobian function (3.3) is closely 
related to it. Instead of starting directly with the trans
formation (3.6), it will prove easiest to show that the 
infinitesimal Jacobian has a form related to (3.10). 

First notice that not all x~w' s are independent, but 
obey the restrictions (2.2). We start, therefore, with 
nm dimIF independent quantities Y~W which are made to 
undergo the transformation (3.6) induced by the x' s. We 
shall show that the transformation Jacobian J' =0 (Y')I 
o (y) is equal to (3.3). Indeed, parametrize Y~W through 
(i) the in general quaternionic quantities rO<B=Y~Y~* of 
which there are im (m - 1 )dim IF + m independent compo
nents r.::B' Since r 0<8= rt 0< while rao< is real, (ii) the in
dependent parameters in x~w chosen so that they satisfy 
(2.2) and which can. be written in terms of the quater
nionic Euler angles. 22 Now, the Jacobian J' is indepen
dent of the r a8 since they are invariant under K(n, m) 
transformations. Hence J' only depends on the x~w and 
is thus the Jacobian J in (3.3). 

The explicit calculation of the infinitesimal J' =J pro
ceeds rather easily: From (3.6) we find y' (y, 1 + Er) and 
of these we need only the diagonal elements oy'~wloy~w 
(no sum). The Jacobian then reduces to 

J "" 1- E[ (n + m)dimIF - 2]TR(~)0 (3.12) 

which is directly comparable with (3.10) and (3.11), and 
assures us the form (3.3). 

G. Unitary representations of K(n,m) on X 

We can obtain unitary representations of the group 
K(n, m) on the space of infinitely differentiable func
tions23 over X ""K(n - m"K(n) completing then with re
spect to the norm induced by the inner product 

(3.13) 

when we introduce the group action through the oper
ators Ta(G) as in (3.2). The choice of a complete and 
orthonormal set of functions {cI>n(x)} on X allows the con
struction of the representation matrix elements as 

(3.14) 
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Due to the relation between the multiplier function and 
the transformation Jacobian, for 

T=-!-(m-l)dimIF+ip, preal, (3.15) 

the representations are unitary, i. e., (Ta(G)Fu 
T'(G)F2)x= (Ft>F2 )x. They correspond to a principal de
generate series of representations 22•24 of K(n,m) char
acterized by the value of a given by (3.2b). Had we used 
the freedom allowed by the addition of a "spin" part to 
the generators, our functions F would be tensor-valued 
and the inner product (3.13) would include an inner pro
duct in an additional finite-dimensional vector space. In 
this way we can describe less degenerate representa
tions where the additional labels are induced by the sub
group K(n - m), This in no way hinders our construction 
since K(n -m) is the boosts' centralizer in K(n)<8IK(m). 

IV. CONTRACTIONS 

A. Of the algebra 

The representations of the algebras ken, m) in Sec. II 
can be labelled by ken, m )T' By a contraction of these re
presentations we mean to divide some of the generators 
by T and let I TI - 00. It is then seen that we can effect 
essentially two kinds of contractions, one with respect 
to the ken) subalgebra considering M~", T'lM:. n+a , and 
T'lM:;'+". n+8 and letting I T I - 00, thereby contracting 
k(n,m) back to im[k(n)E&O], where 0 denotes the identity 
representation of k(m). Another contraction considers 
M: v , T'lM:. n+", and M:;'+o<,n+8 for I TI - 00 [i. e., with re
spect to the k(n)E&k(m) subalgebra]. In this case we ob
tain an im[k(n)E&k(m)] algebra where the boost generators 
x~ transform as vectors with respect to the lower index 
under ken) and with respect to the upper index under 
k(m). 

B. Of the group 

The contraction of the representations of K(n,m) given 
by (3.2) proceeds through considering group transforma
tions G(E) approaching the identity for E - 0 in the boost 
elements and letting the representation parameter p - 00 

such that Ep = ~, a finite number. As regards the boost 
generators, the group action (3. 6) colapses to the iden
tity while the multiplier function in (3.2) becomes, using 
(3.10), 

lim j..La(x,G(E) ""lim [1- 2E(ix)~,,]IP/2= exp[ - iH~)~a], 
<-0 <-0 

(4.1 ) 

thus the boost action in the direction (j..L, a) becomes 
multiplication by exp(- i~x~) and the group contracts to 
l'"[K(n)<8I K(m)]. 
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Continuing the line of development of Paper I [J. Math. Phys. 15, 1295 (1974)], we enlarge the 
concept of canonical transformations in quantum mechanics in two directions: first, by allowing the 
definition of a canonical transformation to be made through the preservation of an so(2, I) algebra, 
rather than the usual Heisenberg algebra, and providing the bridge between the classical and 
quantum mechanical descriptions, and, second, through the complexification of the transformation 
group. In this paper we study specifically the transformations which can be interpreted as the radial 
part of n -dimensional complex linear transformations in Paper I. We show that we can build Hilbert 
spaces of analytic functions with a scalar product defined through integration over half the complex 
plane of a variable which has the meaning of a complex radius. A unitary mapping to the ordinary 
Hilbert space L ;n., (0,00) is provided with a kernel involving a Bessel function. Special cases of this 
are shown to be the Barut-Girardello, one-dimensional Bargmann and Hankel transforms. The 
transform kernels provide a series of representations of a subsemigroup of S L (2,a:) and allow the 
construction of coherent states for the harmonic oscillator with an extra centrifugal force. We present 
a hyperditTerential operator realization of these transforms which yields new 
Baker-Campbell-Hausdorff and special function relations. 

1. INTRODUCTION 

In the article which started this series (Ref. 1, 
henceforth refered to as I), we described complex 
linear transformations between the quantum-mechanical 
operators of position x and momentum p, and a new pair 
of quantities given by 

ij=aX+bp, 

f=cx+dP, 

with the unimodularity condition 

ad- bc=l, 

(l.la) 

(l.lb) 

which ensures that (l.la) is a canonical transformation 
in the sense that 

[x,p] = in. -[~, tJ = in.. (l.lc) 

The motivation for such a program was the observa
tion that particular complex transformations (1.1) have 
been fruitful: Bargmann2,3 considered (l.la) with 

a=2-1
/ 2=d, b=-i2-1

/
2=c (1.2) 

and the ensuing formalism has been applied to the co
herent-state description of quantum optics. 4 Equations 
(1.0 for a, b, c, d real have provided unitary represen
tations5

•
6 of SL{2,IR) and, when continued into some re

gions of the complex plane of the parameters, have 
been used to relate and evaluate matrix elements of n
body systems subject to Gaussian-potential interactions 
relevant for the nuclear cluster model. 7 

In I we showed that: (i) The three examples given 
above are particular cases of a canonical transform 
(1.0 for a,b,c,dEcr;, the complex field, between the 
Hilbert space H == L 2(m) of square-integrable functions 
over the real line IR and spaces J <a,b,c,d) isomorphic to 
the Bargmann space of entire analytic functions in cr; 
with the well-known scalar product and decrease condi
tions. 2 (ii) A unitary transformation between Hand J 
could be implemented [for 1m (a/b) ~ 0 and b real when 
a=O] which contained the Bargmann'transform for (1.2) 
and the Moshinsky-Quesne transform5 for a, b, c, dE IR. 
(iii) The transform kernels provided a representation of 
a subsemigroup of SL{2, cr;) for a, b, c, dE cr; subject to 
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certain conditions. 8 (iv) A realization of these trans
forms through hyperdifferential operators was given, 
defined at least on spaces of entire functions. The de
fining condition!l for J.. <a,b,C,d) were to find a scalar 
product where T) and!; had the hermiticity properties 
derived from (l.la) and the self-adjointness of i and p 
and were represented in the Schr1:ldinger realization 1] 

and - i a/aT) on functions of T) E cr;. The results were 
seen as a step towards exploiting the fact that quantum 
mechanics, being a richer structure than classical 
mechanics, and making use of the complex field in an 
essential way, should be amenable to a wider class of 
canonical transformation-defined through {l.lc)-than 
have been generally considered, 9 introducing scalar 
products more general than the usual Dirac integral 
over IR. 

Among the extensions foreseen in I were to consider 
n-dimensional transformations (1.1) where x== (XJ) , 

j = 1, ... ,n etc. were n-vectors, but a, b, c, d remained 
(complex) multiples of the unit matrix. Equation (1.1c) 
now takes the familiar form [xi' Pk ] = io Jk' etc. The 
"angular" properties, as given by the angular moment
um operators in any of the subspaces, remain invariant 
under (l.la) since the unimodularity condition (l.lb) 
insures that 

Lik == xJPk - XkPi = ~);k - ~k~j" (1. 3) 

The "radial" part of (1.1) is displayed through the 
three equations 

1]2 = a2x2 + 2abx . p + b2p2 - inab, 

~. t= aci2 + (ad + bc)i·p + bdP2 - inbc, 

:2 = c2x2 + 2caX'p + if2p - incd. 

(l.4a) 

(l.4b) 

(1.4c) 

Seen classically, the canonical transformation can be 
described setting x2 = r, X· P = rpr , where the Poisson 
bracket {r, p) = 1, so that rand Pr are canonically con
jugate quantities and p2 =p~ + p~/r, PI!' being the (con
stant) angular momentum. Correspondingly ~ = rr, 
1]'t=Ppp, ~=p:+p~/p. Equations (1,4) then read 

p= [a2r + 2abrPr + b2(p~ + p~/r)]1/2, 

Pp= [acr+ (ad + bc)rPr + bd(p~ +p~/r)J1p, 

Copyright © 1974 American Institute of Physics 

(l.5a) 

(1. 5b) 
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and the transformation of the pairs (r ,Pr ) - (p,pp ) can 
be checked to be canonical {Le., {r,Pr} = l.-.{p , pp} = 1). 
As the variable r takes values in JR+ (the half-axis 
[0,00 )), ,r E a;, and p will take values on half this region, 
which we can choose as 

a;+={pE a; I arg(p) E (- h, t1l')}. 

The transformation (1.5) is not particularly simple
looking, yet its quantum mechanical version will be 
seen to be implementable. This suggests that the def
inition of a quantum mechanical canonical transforma
tion be made not in terms of the conservation of the 
Heisenberg algebra9 as in (l.lc), which loses its mean
ing since th~ "quantization" of (1. 5) is not well defined. 
The alternative, as suggested in this paper, is its 
definition in terms of the conservation of a higher 
algebra, in this case so(2, 1), which can be built out of 
the basic classical quantities. 

The Schrodinger representation10 of the operators 
X2, x 'p, and p2 is 

xf(r) = r2f{r} , 

X 'pf(r} = - ir :rf{r}, 

~ (tP n-1 d A\ 
p2f{r) = - dy2 + -r- dr + r2)f{r} , AE JR, 

{1.6a} 

(1.6b) 

{1.6c} 

on the (at least twice-differentiable) elements of the 
Hilbert space H~ =L ~n-1(IW) of functions fir) on the 
positive half-axis with the scalar product 

(1. 7) 

(the star indicates complex conjugation). The operators 
(1.6) are Hermitian between these elements and their 
domain can be enlarged through the usual adjunction 

Procedure to self-adjoint operators inH+ 0 The constant 
n 1 

A in (1. 6c) comes from the spectrum of L2 = ;{'j, LilLil 

when acting on the so(n)-irreducible components of the 
functions, and has the values 

A=-l(l+n-2), l=0,1,2,···. (1. 8) 

The statements concerning the hermiticity of p2 continue 
to be valid, however, for arbitrary A E lR. 

It is the purpose of this article to describe a family 
of Hilbert spaces J~l(a.b.c.d) (the indices a, b, c, d will 
be suppressed) for which a Schrodinger representation 
parallel to (1.6) can be implemented for the new varia
bles in (1.4), namely 

ifj(p) = p2j(p) , 

~. tj(p) = - ip :p j(P), 

A - ( d2 n - 1 d A \ - (p) t 2
f(P) = - dp2 + -p- dp + p2)f 

(1.9a) 

(1. 9b) 

(1.9c) 

on functions of the complex variable p restricted to the 
region a;+ (Eq. (1.6)J. In order that the total derivative 
with respect to a complex variable be well defi,!led, the 
functions jwill be analytic functions of p and af(P)/ap* 
=0. The measure for the defining scalar product in 

J~" 
(1.10a) 
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is of the form 

dJ.1.nl (P) = I)nl(P,p*) dRepdImp, (1. lOb) 

where the weight function I) nl (p, p*) will be found from 
the hermiticity properties of (1.9)-(1.1) and the 
hermiticity of x and P. This will be performed in Sec. 
2 and the characteristics of the Hilbert space J~, as
certained. In Sec. 3 we will find the unitary transforma
tion between H~ and J~, as given by 

j(p) = fo"" yr-l dr AnI (p, r) f{r), 

fer) = fe+ dJ.1.", (P)Anl (p, r)*j(p) , 

(1.11a) 

(1.11b) 

through the transform kernel An,(P, r) function of n, land 
a, b, c, d. This complex radial transform will relate to 
the complex linear transform of I as the Hankel trans
form relates to the n-dimensional Fourier transform 
and, as will be shown, contains the Barut-GirardeUo 
transformll for the value (102) of the parameters12 and 
the radial transform of Moshinsky, Seligman, and Wolf 
in Ref. 13 for a, b, c, d real. In Sec. 4 it is shown that 
this last transform is indeed regained when a, b, c, d be
come real and that the scalar product (1.10) collapses to 
the line integral (1.7). The one-dimensional Bargmann 
space2 is also regained when n = 1 as the direct sum of 
J;o and J;1' We consider the interest of the complex 
radial transform to go beyond that of the mere descrip
tion of the radial part of a known transform: As we will 
be mapping the radial wavefunctions of potentials of the 
harmonic oscillator + centrifugal potential (-I/r2) kind 
on functions of the type p2N+I, coherent states for these 
systems can be defined. This is shown in Sec. 5. In 
Sec. 6 we make the composition of transforms and 
shown that the transform kernels provide a representa
tion of a subsemigroup of SL(2,a;) in (1.1). Some con
clusions of the role of complex canonical transforma
tions in quantum mechanics are presented in Sec. 7. In 
two appendices we give a hyperdifferential operator 
realization of the transform (1 08) obtaining a new rep
resentation of the associated Laguerre functions and its 
direct relation to the n-dimensional complex linear 
transform. 

2. THE SPACE J~I 

We will construct a space J~/Ia.b'C.d) of functions j,g 
over PE a;+ endowed with a scalar product of the type 
(1.10) such that the operators ~2, ~ ·t, and f have the 
Hermitian conjugation property obtained from inverting 
(1.4), 

(X2j, g)nl = ([d2n2 - 2bn . t + b2t2 + indb Jj, g)nl 

= (j,x2g)nl = <1, [d2;r - 2b~· t + b2t2 + indb]g)nl 

(2.1) 

and similar companion equations for (x .p)t =p'x 
and £>2 in the Schrodinger representation (1. 9). Equa
tion (2.1) and its companions can be turned into differ
ential equations on the weight function I) nl (p, p*) in (1.10) 
through integration by parts, using, for p = I pi exp(i e), 
dRepdImp= Ipl dlpl de, and d/dp=-!exp(-ie)[a/alpl 
+ (ip)-l a/aeJ so that iJp*/ap= 0 and, for analytic func-
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tions A(P), B(p), 

[<C lpl dlplL
B 

dBA(P) ~B(P) 

=-l<C lpl dlpllB dB (:pA(P»)B(P) 

+~Ipi r dBexp(-iBMBI J", Ipl~<c 

-~iexp(-i8) i<C dlpIAB(ls'B-ls.",). (2.2) 

By assuming the boundary integral terms vanish (the 
restrictions from this condition will be made explicit 
below), Eq. (2.1) yields the differential equation 

b*2 r_ L + (2i d* * + n-1)_3_ l 3p*2 b* P p* 3p* 

d*2 *2 . d* ( ) A + n -lJ (P *) 
+ b*2 P +Zb* 2-n - p* vnl ,p 

= b2 [_ ~ + (_ 2i ~ + n - 1) ~ 
3p2 b P P 3p 

~ --2 .d(2 ) A+n-1J (P *) + b2fJ -zb -n - p2 vnl ,p , (2.3) 

and similar ones (i. e., replacing b - a, d - c, etc) for 
the companions, with vanishing conditions for the bound
ary terms of pv.f'g, vJ*(3pg), (3 p v).f'g, and P-1vJ*g and 
similar ones replacing p and p*. Notice that whereas in 
I we had two simultaneous first-order differential equa
tions, here we have three second-order ones. Based on 
I, however, we can make the ansatz that 

vn/(p,p*)= exp(z: p2) exp(;: P*? J1.nl (pp*), (2.4) 

where, as in I, we define 

U= a*d- b*c, 

v = 2Im(b*a). 

(2.5a) 

(2.5b) 

We obtain the result that the three equations (2.3) yield 
a single differential equation for J1.nl which shows that 
J1.nl (pp*) = (pp*)n/2{3n/2+I_l(PP* Iv), where f3 is a solution 
of Bessel's modified equation: I or K functions. The 
boundary integral over the semicircle at infinity appear
ing in the integration by parts of (2.3) will vanish for 
functions of less or equal growth than exp(~p2/v) if we 
choose the MacDonald (or modified Hankel) function K. 
We find, with a specific choice of normalization, 
justified in Sec. 4 that 

vnl (p, p*) = (2/1TV) exp[ (1/2v)(up2 + U*p*2)] 

x (pp*)n/2Kn/ 2+I-l(PP*/v). (2.6) 

If we let u=wexp(icp) be the polar representation of u, 
the behavior of (2.6) at the interval end points is 

v (p p*) '" (.!.1TV)1/2Ipln-l 
nl' Ip I~<X) 2 

X exp[ - (l/v) I p 12(1 - w cos{cp + 2B})] (2.7a) 

and 

v (P p*) '" 2(2v)n/2+/-1r(.!.n+l_OlpI2(1-1 ) nl' Ipl~o 2 , 

l>-tn+1, (2.7b) 
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v (P p*) '" - 2 (1TV )-11 P 12 (1-1) In (I p 12/ v) 
nl' Ipl~o ' 

l=-~n+1. (2.7c) 

As A in (1.8) is invariant under the replacement l- -l 
- n + 2, only l ~ - ~n + 1 need be considered. Corre
spondingly, we have the property K" (z) = K_ • ..{z), The 
remaining boundary integrals over the imaginary axis 
will be made to vanish and the finiteness of (j, g)nl 
itself determined by restricting the space of functions. 
Consider 

(2.8a) 

for mE lR and cm a normalization constant. In perform
ing the scalar product (¢~, -;p~, )nl we can separate the 
integration of p E a:+ into a radial and angular part, the 
latter being f dBexp[i(m' -m)B] over [-h,h). This is 
zero if m - m' is an even nonzero integer, and 1T if 
m = m'. In the last case, the remaining integral can be 
evaluated14 and ¢;~ (p) normalized through (2. 8a) setting 

c
m 

=..9
m

[H2v)n/2+mr(Hn + l + m»r(Hm -l + 2»]-1/2, 

(2.8b) 

where..9 m is an arbitrary phase and the arguments of the 
function reflect the fact that the integration is valid and 
the result finite for m > l - 2 and m > - n - l. The latter 
is a consequence of the former for l ~ - ~n + 1. In 
checking the vanishing conditions for the boundary 
terms mentioned below Eq. (2.3), we come to the con
clusion that these hold if m - m' is an even integer. If 
we now write m = l + a + 2N with N = 0, 1 , 2, . .. and 
a E (-2,0] we can see that asking ¢~(P) to be in the in
variant common domain of the three operators (1.9) 
forces a = 0. Hence an orthonormal basis for the space 
J~, object of our construction is, with a specific choice 
of phase, 

-;PN(P) = (-1)N[~(2v)n/2N! r(N + ~n + l)]-1/2 

x exp[ - (U/2V)p2][(2v)-1/2p]2N+I, N = 0,1,2, .... 

(2.9) 

Now, the basis (2.9) is complete in the Hilbert space 
J~, of functions i of the type J(P) = exp[ - (U/2V)p2]p' 
times an entire function in p2/2v of growth (1.1) [or of 
growth (2, 1/2v) in p] completed with respect to the 
norm induced by (1.10) with the weight function (2.6). 
The proof is the standard one15 which proves that con
vergence in the norm implies pointwise convergence 
for these functions. Indeed, for 

J(P) = exp[ - (u/2V)p2]pl ~ fNP2N =t a NfN¢N(P), (2. lOa) 
N.O N=O 

aN = (_1)N(2v)N+<n/2+1)/2[~N! r(N+~n + m1/ 2, 

we have 

USing the Schwartz inequality, we obtain 

li(P) 12 = I exp[ - (U/2V)p2]pI121 ,tofnp2N 12 

.;; l'6fNa N 121 exp[ - (U/2V)p2]pI12 

X 1'6 a;~p2N' 12 

(2.10b) 

(2.10c) 

.;;'6lfN 12Q1;1 exp[- (U/2V)p2JpI 12'6 QI;~ I piaN' 
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= IIJII~,lexp[- (u/2v)p2JI2IpI2-n 
X v-lIn 1 2+1-1 (I p 12/ v) 

= II JII ~,Kn' (p, p) (2.11) 

[where the function Kn,(P,p') will be defined below], and 
hence any Cauchy sequence of functions coverging in the 
norm to a function in J~, implies the uniform conver
gence of the functions themselves on any compact set in 
«;+. The reproducing kernel in the integral (1.10)-(2.6) 
is thus 

Knl(P,p')= t 1>N(P)1>N(P')* 
N=O 

= v- l (pp'*)l-n/ 2 exp[ - (1/2v)(up2 + u* p'*2)J 
xlnI2+I_l (pp'* /v), (2.12) 

and appears in the last number of (2.11). 

Before closing this section, we will find an algebra 
of raising, lowering, and weight operators for the basis 
functions (2.9). Easiest to build, the raising operator 
is 

P. 1>N(P) = [- (1/2v)p2J1>N(p) = [(N + l)(N + tn + l)]1/21>N+l (P). 

(2.13a) 

Its Hermitian conjugate under the scalar product (1.10) 
is the lowering operator 

L 1>N(P) = - [tv d~2 + (up + tvn~ 1) :p 

+ (u
2 

p2 + !.nu + !.v ~ \] 1> (P) 
2v 2 2 iJ N 

= [N(N + tn + l-1)p/2¢N_l (P). 

The weight operator' 

N1>N(P) = 0 :p + ;p2 +tn) 1>N(P)= (2N + tn + Z)1>N(P) 

(2.13c) 

completes the set of generators of an 80(2,1) algebra 
with commutation relations 

[;V,P.J=2p', [N,L J= -2[, [p. ,L J= -N. (2.14) 

3. THE TRANSFORM BETWEEN H: AND J~I 

The transform kernel Anl(p,r) in (1.11) can be cal
culated if we ask for the conditions (1,4), (1.6), and 
(1. 9) to hold, namely, that if ](p) is the transform of 
j(r), then p2](p) be the transform of 

[ttra + 2iabrar - b2 (a~ + n ~ 1 ar + .» +niab] j(r). 

Similar conditions stem from - ipap and -{a~ 
+ [ (n - 1)/ p J a p + A/ p2}. By partial integration in (1. 11 ) 
these can be turned into three second-order differential 
equations for Ani (p, r). From I we make the ansatz that 
Anl(p,r) have the form 

exp[ (i/2b)(ar2 + dp2)JBnl (pr) 

whereupon the three differential equations for Ani (p, r) 
yield a single one for Bnl(pr) as (pr)1-n I 2 times a solu
tion of Bessel's equation. If j(r) belongs to the space 
H~ with scalar product (1. 7), for (1.1la) to be in-
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tegrable we must require Im(a/b) ~ 0 (i. e., v ~ 0) for 
the exponent and the Bessel function as solution for 
Brtl(pr). With a specific choice for phase and normaliza
tion to be justified below and in Sec. 4, we write 

An' (p, r) = b-l~n., exp[ (i/2b)(ara + dp2)J (pr)1-n 1 2 

x JnI2+'_1(pr/b) (3.1a) 

with 

.9 n• , = exp[ - ih(tn + l)J. (3.1b) 

The calculation of the expliCit form of the orthonor
mal basis transform to (2.9) can be simplified if we 
look for the eigenfunctions of the weight operator 
(2 .13c) which through (1.4) becomes 

N¢N(r)=v-l ~aI2ra--hRe(ab*)r :r _lbI2(~ 

+ n; 1 :r + ~) - tin Re(ab*)] ¢N(r) 

= (2N + tn + Z)¢N(r) , (3.2) 

plus normalization under (1.7) and a phase to satisfy 
Eq. (3.4) below. The result is, if we denote the phase 
of b by exp[i argb J with argb E [ - 7T, 7T), 

¢N(r) =') N{2N! [Im(a/b)JnI2+'/r(N +tn + Z)p / 2 

X exp[ - -h(a* /b*)raJrZ Lff1 2+1-l)[y2 1m (a/b)], (3. 3a) 

with 

~ N = exp[i(2N +tn + l)(argb +h)J. (3.3b) 

We can now verify that16 

(3.4) 

At this point it is apparent that a second pair of trans
form orthonormal bases for H~ and J~, is useful, since 
the limit v-O of real transformations of (2.9)-(3.3) is 
not manifest. As in I, we choose the basis functions 
IJ!NI (r) for H~ to be the radial part of the solutions of a 
harmonic oscillator with centrifugal force Hamiltonian 
in n dimensions given by 

2131J!NI (r)Y1 (w) = Mil + gi-2 +x2J1PNI (r)Y1 (w) 

=!.[_~_n-1~ g+L(L+n-2) _.2J 
2 ar2 r ar2+ r2 +r 

X 1J!N/(r)Yf (w) 

(3.5a) 

where Y1(w) is the n-dimensional normalized spherical 
harmonic, the collective label M standing for the trans
formation properties under SO(n -lb· .. ~ SO(2), while 
the SO(n) label L enters into the differential operator 
and relates to l through 

l(l+n- 2)= -A=g+ L(L +n-2), (3.5b) 

giving two values of l for each g and L, in general. The 
solution of the radial equation is 

IJ!NI(r) = [2N!/r(N +tn + 0)1/2 exp(- r2/2)r'L;1 2+1-1) (r2) , 

(3.6) 

whose corresponding raising and lowering operators can 
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be obtained from (3. 5a) and 

11 = Hp2 + gX-2 _;C2] , 

12 = Hi.p +p . x], 

(3.7a) 

(3.7b) 

which can be verified to close into an so(2, 1) algebra. 
The transform basis functions can be calculated direct
ly using the transform (1. 7a), (3.1), (3.6), yielding17 

'ifNI (P) = [2Nl/r (N + tn + l)p/2(a + ib)-n/2-/[ (a - ib)/ (a + ib)]N 

xexp (- ~ ::;~ tr)pIL;/2+1-1)(p2/[a2+b2]). (3.8) 

In particular, notice that when we have the Bargmann 
case (1.2), (2.5) gives u=O, v=l, only the leading 
term of the Laguerre function remains, and both bases 
coincide as (3.8) becomes proportional to p2N+1 and 
equal to ¢N(P). This determined our choice of phase for 
the latter. 

The unitarity of the transform pair (1.7) with the 
kernel (3.1) between H~ and ]~I can be established fol
lowing the same steps as in Bargmann's original work.ls 
That it transforms the orthonormal basis {<PN(r)} to the 
orthonormal basis {¢N(P)} shows that the m~ping is 
isometric. The completeness of the basis {<PN(P)} in 
]~I was found in (2.11)-(2.12) and, moreover, we can 
perform directly19 

fa'" r"-1 dr AnI (p, r)Anl(P', r)* =Knl(P, p'), (3.9) 

when (1. 7a) can be performed, i.e., when the kernel 
(3.1) is bounded, namely for Im(a/b)~O (v~O) or, when 
a = 0, b should be real. As (], g)nl = (j, g)a for any f, g 
inH~, the mapping is unitary and the existence condi
tions are identical with those found in I for the linear 
complex transforms. 

4. LIMITS AND PARTICULAR CASES 

Real transformations: We want to show that, as in I, 
when the transformation parameters a, b, c, din (101) 
become real, the space ]~I with a scalar product (1.10) 
over CC+ collapses to H ~ with a scalar product (1. 7) -
over lR+. The said limit involves first determining the 
behavior of the weight function in (2.6) as, in (2.5), 
v-O and, since luI 2+vw=1 with w=2Imc*d, for 
u = w exp (irp), w -1. Recalling that20 K" (z) - [1l/2z p/2e-· 
as Izl-oo, w=11-vwI 1/ 2-1-tvw, l.Lm.e-1 / 2 

Xexp[-z2/e]=7Tl / 2o(z) for real positive e-O and the fact 
that vnl (p, p*) is under the integral J c+ dRep dImp 
=f~ Ipl dlpl f~:J2de, 

1. Lm. vnl(p,p*) 
v-a 

= 1. i. m. [2/ TTV P/2 exp[ - (I p12/ v)(l -cos{rp + 2e}) 
v-a 

- twl p12COs{rp + 2e}] 

= Ipln-lo(1 pi sin(trp + e» exp[- twl pI2COS(rp +2e)] 

= Ipln-l[o(trp+e)+o(trp+B-7T)]exp(-twlpI2). (4.1) 

Now, as e E [- h, t7T), only the first 0 contributes to 
pick out the value e=trp in the integral, so that for 
r'= Ipl, 

lim f ... + dlJ.n, (P)!(P)*g(P) = f ~+ -II(J /2 r'n-l dr' exp(- wr 12 /2) v·o ~ ~ ~ 

xj(r')*g(r') , (4.2) 

and the normalization coefficient for vnl is thus seen to 
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be the appropriate one and the parameter l has dis
appeared from the right-hand side of (4.2). Since ur'2 
\s real, from the discussion below Eq. (2.9) we can see 
that the functions j,g must be of growth (2, 1/2v - w/2v) 
- (2, iw) in r'. In the limit when the transformation 
parameters become real, w - 0 and rp - 0, the integral 
in the right-hand side of (4.2) is over lR+ and ]~I has 
become identical with H~. The transform kernel AnI (p, r) 
in (3.1) is uneventful in this limit and now becomes a 
transform in H~ which coincides with the unitary rep
resentations of 50(2,1) in "radial" space. 21 

Transformations where b - 0 can be obtained out of 
the development above since b - 0 implies v - 0, plus 
the analysis of the behavior of Anl(P,r) in (3.1). It can 
be shown22 with due care to the phases involved for 
r~ 0, argr' E [- h,h), 
1. L m .Anl (r', r) b-a 

=r'1-na"/2-lo(r_ a-lr') exp[ic/2a)r'2]. (4.3) 

Since arga=-targu=-trp=B=argr', (4.2) acts under 
the line integral over lR+ exp(- irp/2) with the appropriate 
phase relation between rand r'. The case a = 1, c = iq, 
q real> 0 was used in Ref. 7 to reproduce the matrix 
elements of a Gaussian potential. The identity trans
formation is now obtained by simply setting a = 1, c = 0 
in (4.2), and AnI (r' ,r) is seen to become the reproduc
ing kernel under the scalar product (1.7). It is thus 
seen that our choice of the phase factor (3 .1b) is 
appropriate. 

The Hankel transform is obtained when, as for the 
ordinary Fourier transform in (1.1), we set a= O=d, 
b = 1 = - c. The transform kernel becomes23 

A~I(r' ,r)=09 nl (r'r)1-n/2Jn/ 2+I-l(r'r). (4.4) 

The Barut-Girardello transform ll was introduced in 
developing the formalism for coherent states associated 
with noncompact groups, these being eigenstates of the 
lowering operator of an so(2, 1) algebra in the ("dis
crete") D"(~) representations (~= - t, -1, - i, ... ). It 
can be obtained as a particular case of complex radial 
transforms for the values (1.2) of the parameters. The 
scalar product in the ]~I space has the weight function 

~I (p, p*) = 27T-1 1 p I nKn/ 2+I_l (I p 12
). (4. 5a) 

Similarly, the transform kernel becomes 

A~I (p, r)= 21/2(pr)1-n/2 exp[ - t(r2 + p2)]Jn/ 2+I_l (2
l / 2pr), 

(4.5b) 

and the orthonormal basis 

~(P) = (_1)N[2n/ 2-1Nl r(N + tn + Z)]-1/2(2-l / 2p)2N+I, 

(4.5c) 

with the reproducing kernel 

K~I (p, p') = (pp,*)1-n/2Inf2+l_l (pp'*). (4.5d) 

When l = 0, this agrees with the scalar product in the 
Barut-Girardell024 space z = tp2 E a: for D+(~) when the 
latter is multiplied by a factor of 2n / 2

-
2r(tn) and we set 

~ = - in. The results of Ref. 7 are regained when we 
multiply our weight function by a factor 2n / 2- 2 and set 
I q I = tn -1, integer. 25 It should be noticed that the basis 
functions (3.6) are bases for an so(2, 1) representation 
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given by the eigenvalue of J2=~-~-~ obtained from 
(3.5)-(3.7) to be Q=H(tn+l-1)2_1]=~(~ +1) i.e., 
labelled by ~ = - t ± t(tn + l-1). Multivalued "discrete 
series" representations of the SO(2, 1) group are im
portant as can be seen from the fact that for the ordinary 
one-dimensional harmonic oscillator (n = 1, ,\ == 0) we 
have the ~ = - t and - t representations of SO(2, 1).26 

The one-dimensional "radial" spaces are the cases 
when n = 1. As no angular momentum operators exist, 
in (1.8), O=,\=-l([-1). There are two solutions for 
this: l=O and l=1, i.e., tn+l-1 ='fi, and corre
spondingly two spaces, J~o and J~1 are transforms of 
H~. The weight function in both spaces is, recalling 
K~I/2(Z) = [7T/2z)1/2e-8, 

VI (p, p*) = 2(27Tv)-1/2 exp[ (1/2v)(up2 - 2pp* + U*p*2)] 

'!EV1(p,p*), (4.6) 

which is formally identical to the weight for the complex 
linear transform spaces in I. It has to be recalled, 
however, that, there,27 the scalar product involves in
tegration over all of ([. We shall explain this below. 
The two transform kernels are, using the particular 
expressions for J>l/2' 

AlO(p, r) = exp(- i7T/4)(2/7Tb)1/2 

X exp[(i/2b)(ar + dp2)] cos(pr/b), 

Au (p, r) = - i exp(- i7T/4)(2/7Tb)1/2 

x exp[ (i/2b)(ar + dp2)] sin(pr/b). 

(4.7a) 

(4.7b) 

Hence in J~{), the transform functions have the property 
10(P)=10(-p) under inversion of the space, while inJ11 
fo(p) = -fo(-p), as can be seen from the bases (209). 
Now if for a given function f(r) on rE IR· we extend the 
domain to the whole of IR and write f(r) = fJr) + fJr) , 
f±(r)=t[f(r)±f(-r)], expandingfinto its odd and even 
components and further demand that a transform 1(p) 
have the same parity under inversion of the argument 
as the original function [this corresponds to having L2 
with the same eigenvalue ,\ in both spaces, the trans
formation properties under O(n) now collapsing to C2 ], 

we can write 10 as the transform of f+ and il as that of 
f-. Suppressing arguments, 

J=io +11 = Jm.. dr AlOf. + Jm.+ dr Auf_ = Jm.. dr Alf (4.8) 

with 

A 1(p, r) '!E t(AlO + Au)(P, r) 

== (27Tb)-l/2 exp(- i7T/4) exp[(i/2b)(ar - 2rp + dp2)], 

(4.9) 

regaining the complex linear transform in I between 
H '!E L 2(_ 00 , 00) and J with the scalar product 

(j,g)! = 2(jO,gO)10 + 2(j1 ,gl)U 

= Ie dRepdlmpvl(p,p*)J(p)*g(p). (4.10) 

For the values (1.2) of the parameters, this is the 
Bargmann transform. 2 
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Another, quite different, way of obtaining back the 
complex linear transforms is to follow the procedure of 
Barut and Girardelloll of considering functions of z 
=e-1 /

2 with z=tp2 and letting n- oo such that en remain a 
finite number. This effects the contraction of the rep
resentations of the so(2, 1) algebra in (2.14) in the 
orthonormal basis (2.13) to that of the Heisenberg 
algebra. The limiting procedure is a delicate one, and 
we shall not pursue this point further. 

5. COHERENT STATES FOR THE RADIAL HARMONIC 
OSCILLATOR WITH A CENTRIFUGAL FORCE 

The Bargmann transform has proven to be the natural 
tool for the construction of coherent states for the 
harmonic oscillator since they map the eigenstates 
~N(x) of the one-dimensional system on functions of the 
complex variable z E ([, 1PN(z) = [(27T)1/2N! ]-1/2ZN (using 
the normalization of r). The coherent states, defined28 

as Iz)=2; IN)1PN (z) are eigenstates of the lowering opera
tor z = 2-1 / 2 (X +ip) with eigenvalue z. They resolve the 
identity as 11. = f I z) dJlI(z)(z I [using the measure dJlI(Z) 
of r] and are overcomplete29 as (z I z') =Kl(Z, z'), the 
reproducing kernel in the scalar product with measure 
dJl1(Z)' 

A similar construction for the radial functions of an 
n-dimensional harmonic oscillator with centrifugal force 
can now be made. The angular part of the wavefunctions 
continues to be the n-dimensional spherical harmonic in 
the n - 1 angles of real or complex space as in (3. 5a) 
(see Appendix B). We shall now examine the proper 
quantum-mechanical solutions of the radial part of the 
operator (3. 5a). These are (3.6) plus the conditions that 
13 be self-adjoint between them, which means that the 
constant terms in the partial integrations be zero (which 
imposes conditions on the behavior of the functions at 
r = 0) and that ~Nl' r-I~NI' and (d/ dr)~NI be square
integrable. 30 From (3.5b) we see that for each n, L, 
and g, the two solutions 

are real for centrifugal forces which include attractive 
ones but which are not more attractive than those al
lowed by the zero of the discriminant for the lowest 
angular momentum L = 0 namely 

g~-(1-tn)2. (5.2) 

Given this condition is fulfilled, square-integrability 
of </!NI under the scalar product inH· (since it is assured 
that the behavior at infinity is adequ"ate), places restric
tions on the behavior at the origin: l> - tn. The same 
conditions on r-l~NI and (d/ dr)</!NI narrows the choice to 
1 > 1 - tn. Hence, only l. of the two choices in (5.1) is 
possible for general g and n satisfying (5.2). Only in 
the case when the latter two conditions are absent (i. e. , 
g=O, n==1, L=O, and t=O), do we need the two solu
tions of (5.0. This is convenient since for all cases, 
except the one-dimensional oscillator with no centrifugal 
force, the space J~,. contains all the states of the sys
tem for a given angular momentum26 L. Henceforth 
denote l+=l(L,n,g). Recalling (4.4) define now the kets 

00 

I P)nL = fa IN)nl~(P) 
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00 

= 2-1n/2+I-l)/2p' 6 I N)nl[N! r(N + ~n + Z)]-1/2(_l)N p2N, 
N.O 

PE<r+, (5.3) 

where I N)nl stands for the state (3.6). The ket (5.3) can 
be considered as a coherent state for the system since 
it is an eigenket of the lowering operator defined, 
parallel to (2.14), with (3.7) as 

(5.4a) 

with eigenvalue - ~p2, as the bracketing suggests for 
g- O. This can be proven immediately using the so(2,1) 
raising and lowering operator matrix elements (2.13): 

L I P)nL = t [N(N+~n + l- np/2lN -1 )nl~ 
N=O 

(5.5) 

The usual coherent-state properties follow, 28 as 
nL (pi p')nL =K~I (p, p') and f r:+ I p)nL dJ.lB (p)nL (pi = u.. It 
would seem desirable to change the labels z = tp2 E <r so 
as to coincide with the treatment in Ref. 11 with l = 0 
and n = - 4<1>. There is the problem. however, that for 
l'" 2 x integer, an f(z) = (pI f) would not be an entire func
tion of z, but one with a branch cut from 0 to cO. A com
pleteness statement29 on the coherent states (5.3) is also 
wanting. Since a connection exists between the radial 
differential equations of the harmonic oscillator and 
Coulomb systems, 13,31 one expects that Similar coherent 
states can be defined for the latter. This will be taken 
up elsewhere. 

6. COMPOSITION OF TRANSFORMS AND 
REPRESENTATIONS OF HSL(2, C) 

Two related topics which are virtually identical with 
their counterparts for complex linear transforms will 
now be presented in the briefest manner 0 The first one 
pertains the possibility of composition of transforms, 
seen as active transformations A 1 : H+ =]~ and A 2 : H+ 
=]; into one transform ]~=A2Ail]~=A2l]~ between 
]~ and]~ with the same n, l but differing in the param
eters a, b, c, d, as 

] (2)(P) = Jr:+ dJ.ll (P')A (2,l)(P, p')] (l)(P'), 

] (l)(P') = Jr:+ d~(P)A (2,l)(P' p')*] (2)(P), 

(6.1a) 

(6.1b) 

where dJ.ll(P') and dJ.l2 (P) are the corresponding mea
sures and the transform kernel is 

A (2,l)(P, p') = JII+ rn-l dr A (2)(p, rIA (l)(p' , r)* 

=<I>(b2, - bt;b)n,9 n1 b-l exp[ (i/2b)(ap'*2 + dp2)] 

XJn /2+I_l (pp'* /b) 

(6.2a) 

where 

(6.2b) 
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and 

<I> (b' ,b" ;b) = exp{ - ~i[argb' + argb" - argb - arg(b'b" /bm 

=±1, (6.2c) 

when the conditions for existence ofA l andA2 are ful
filled [i. e., Im(a/bl):;. 0 and Im(~/b2):;' 0, etc]. 

The second point is that the composition of transforms 
can also be seen as that of passive transformations of 
the spaceH~ onto itself through a set of operators (6.2) 
and such that with each matrix M as defined in (6.2b) 
we associate a "D function" 

(6.3) 

which satisfies32 

J r'n-ldr'D(o),n,I(M)D(o),n,I(M) 
lEt • 1',.' 1,. -rn 2 

= <I> (b l , b2;bl2)nD:~~,n,' (M1M2). (6.4) 

We have thus a ray representation of that subset of 
MESL(2,<r) for which integration is possible. The con
ditions for the kernels to be bounded (or Hilbert
Schmidt) were examined in I. This forms a subsemi
group of SL(2,<r) called HSL(2,<r) in Ref. 7 and (6.3) is 
a representation of HSL(2, <r) labeled by the indices 
n, l. A continuum of such representations can be built as 

for MilE HSL(2,<r), with a composition law which re
places the integration over rn+ with LI;+dJ.lk(P), From 
(6.5) we see that for MESL(2,rn)cHSL(2,<r), the rep
resentation is unitary. 

7. CANONICAL TRANSFORMATIONS IN QUANTUM 
MECHANICS, EXTENDED 

In the way of conclusion, the results of I and this 
paper seem to indicate that the definition of a canonical 
transformation in quantum mechanics as that which 
preserves the Heisenberg algebra9 in (l.lc) can be ex
tended. Equation (10 1c) is the quantum analog of the 
classical concept of a canonical transformation to that 
which preserves the Poisson bracket between canonical
ly conjugate variables. The validity of (t.1c) is thus 
restricted to those transformations where the new 
operators ~ and l' exist and have the same domain and 
spectrum as the original, usual x and p. Classical 
mechanics can work with the radial coordinate r and it 
conjugate momentum Pr and establish that (1.5) is a 
proper canonical transformation and, being a local the
ory, avoid specifying what happens at r= O. The trans
lation of (1.5) to quantum mechanics appears difficult, 
as operators "p" and "P/ are not of the usual kind as 
they have no self-adjoint extension. 33 

The picture we seem to be arriving at overcomes this 
limitation on two accounts: First, we make use of 
operators which are properly defined [as the so(2, 1) 
generators (3. 5a)-(3. 7) or their linear combinations 
i2, t (i . p + P . i) and p2 with the extra centrifugal force 
term added to the angular momentum one] and say that 
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the transformation 

- ab + cd U - if - b
2 

+ c2 + IfJ) 
- ac - bd ac + bd 

ab + cd t[a2 + b2 + c2 + If] 

x(~:) 
13 

(7.1) 

obtained from (l.la), (1. 3) and (3.5)-(3.7) is canonical 
in this extended context since, as can be verified 

(7.2) 

with (j,k, l) cyclic permutations of (1,2,3) and El =E2 

= - E3 = 1. The 50(2, 1) algebra is thus conserved and we 
can turn the procedure of finding the weight function 
vnl and transform kernel AnI to stem from (6.1) and the 
hermiticity conditions on the {I~} implied by the {Ij } 

being self-adjoint. Although a Heisenberg algebra is 
undefined here, p itself retains the meaning of an under
lying space variable. The classical limit of (6.1) is 
(1. 5). 

Second, we have permitted the transformation pa
rameters Gl, b, c, d to be complex. This is in line with 
the fact that quantum mechanics allows-indeed needs
the complex field as the domain of definition of its func
tions. The consequence of the second extension is to 
require Hilbert spaces of functions which include the 
usual Dirac10 and Bargmann2

,3 spaces. The transforma
tion (6.1) is the most general one allowed by (6.2), 
since the group of linear real automorphisms of the 
algebra 50(2,1) is 0(2,1) and its complexification is 
SL(2,a:l. 

Among the canonical transformations which have been 
useful in classica1 mechanics is the one mapping the 
phase-space coordinates on a conserved quantity
angular momentum or the Hamiltonian-and its con
jugate-angle or time. One of the aims of this pro
gram2S is to give an extended quantum mechanical 
meaning to these mappings. 
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APPENDIX A:: REALIZATION THROUGH 
HYPERDIFFERENTIAL OPERATORS 

As in I, we introduce a Lie algebra structure for the 
SL(2, <e) set of canonical transforms, disregarding the 
Hilbert-space structure of the functions involved, as 

j(r) =1 r'n-l dr' AnI (T) (r, r')f(r') 
JR-

= exp[iTH~, :r) ]f{r) 
where T labels one-parameter subgroups and asking 
only the integrals involved to exist. The operator 

(Al) 

H(r, d/ dr) need not be bounded. 34 The differential opera
tor H(r, d/ dr) ean be found by inspection from 

H(r, :r)f(r) 
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=-i ( r'n-1dr'(} AnI(T)(r,r')\ )f{r') (A2) JR + uT 1'=0 

and by using the differential equations satisfied by the 
integration kernel, to pass the partial derivatives to 
act on f through partial integration, assuming the con
stant terms to vanish. 

In agreement with what we expect from I, we find 

exp(i~(r)J= exp(i~rJ: 

(~ ~), (A3a) 

exp(ibHo~ + [en -l)/rJor + A/r}) = exp(- ib~p2) : 

(~ ~), (A3b) 

exp(iaHo; + [en -l)/r]or + A/r + r}) = exp[ - iat(p2 -r)]: 

(COSh~Ci sinh~Ci) 
sinh~a coshta ' 

(A3c) 

exp[ - ~(ror +tn)J = exp[ - i,sHi .p + P . x)J : 

(
fIl/2 0 \ 
o e-/3/2)' (A3d) 

exp(irl{a~ + [en -O/rJo r + A/r - r}) 

= exp[ - iyi(p2 + X2)J : 

(
cosh Sinh) 

-sinh cosh' 
(A3e) 

The generators of the last three transforms constitute 
the 50(2,1) dynamical algebra for the radial oscillator 
with centrifugal force. Associating thus products of 
2 x 2 complex matrices to hyperdifferential operators 
yields Baker-Campbell-Hausdorff relations3S including 
a~, (1/r)or' rOr' r, and r-2 terms. A particular com
position used in I is 

(
cosh 6 - Sinhe) 
- sinh6 cosh6 

=(10 -ta1nhe)(1/cOoSh6 0)( 1 0) 
cosh6 - tanh6 1 

and involves the use of (A3) for b= -tanh6=c, ~ 

(A4) 

= - 2 In cosh 6. Rather than write the lengthy resulting 
relation, we take 6=ih. This gives the Bargmann 
(L e., Barut-Girardello, for arbitrary l) transform 
(4.4) as 

- [l(tP n-1A A) f(r)=exp -rr - + - - + - +r fer) 
8 dr r dr r 

=2-II / 4 exp - - + -- - + - er2 /4j(2-1 / 2r). [1 ( ~ n - 1 d A)] 
2dr r dr r 

Writing for f the radial wavefunction (3.6) and for j 
the corresponding (3.S) [Le., (2.9) for u=O, v=lJ 
and recalling (1.8), we obtain 

(A5) 

exp[~(:': + n~l d! _l(l+;;-2»)Jc2-1/2r)IL:/2+I-l)(t~) 
(A6) 

A special function relation which seems to be new is 
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obtained setting z = ~r and inverting (A6) as 

[ ( 
rJl- +.!. d l(l+n-2»)] N+I/2 

exp - z dz2 2 n dz - 4z z 

= (_1)NN! Zl/2 L;r/2+1-l)(z) (A7) 

and can be verified to hold independently by expanding 
in series. 

APPENDIX B: THE PASSAGE FROM n-DIMENSIONAL 
TO RADIAL TRANSFORMS 

In I, Appendix B, we gave results concerning the ex
tension to n dimensions of the complex linear trans
forms. For the case when the canonical transform is 
of the type (1.1), that is, when the transformation sub
matrices A, B, C, D of nX n', are multiples a, b, c, d of 
n., these take the form 

A" (11, x) ={(27T 1 b 1 )-1/2 exp[ - ~i(h + argb)J)" 

x exp[ (i/2b )(ax2 - 2x '11 + d112)]. (B1) 

the integration over x-space being over lR", with mea
sure (/Ix, and the scalar product (j,g) In) involving an in
tegration over 11-space, over ([:" with measure 
v" (11, 11* ) (/I Re11 (/I 1m 11 , 

v"(11, 1() = (~7TV )-" /2 exp[ (1/2v)(U112 - 211 '11* + U*11*2)] , 

(B2) 

We want to show here how expressions (Bl) and (B2) 
relate to the corresponding radial kernel (3.1) and mea
sure (1.10)-(2.6). Consider first the two-dimensional 
case (n=2). Parametrize lR2 as xl=rsinll, x2 =rcosll 
withrE[O,OO), liE [0,27T), andrJl-x=rdrdll. Now 
parametrize ([:2 as 1]1 =psin6, 112=pcos6 with PE ([:+ 

{i.e., argpd-h,h)}, Re6E[0,27T), Im6E (_00,00)' 
Noticing that if y=j(z) and dy=j'(z)dz, then dReydlmy 
= Ij'(z)1 2 dRezdlmz, we have that the measure in ([:2 is 

Now, using x '11=rp cos(lI - 6) and the Bessel generating 
function, we have 

A2(11,x) = (27Tb)-1exp(- ih) exp[ (i/2b)(ar + dp2)] 
~ 

X ~ (-iexp[-i(lI-6)])"'Jm (pr/b) 
m=-oD 

(B3) 

where A 2 •
11t 

(p, r) is given, with correct phase and nor
malization, by (3.1). This means that if we have a func
tion j(x) of definite eigenvalue m under L12 in the form 
jllt(r)[(27T)-1/2 exp(imll)] (so that the angular part be nor
malized), then 

.1(11)= fIR2 rJl-xA2(T/,X)j(x) 

= f
lR

+ r dr A2•m(p, r)jm(r)[ (27T)-1/2 exp(im6)] 

=jm(P)[(27T)-1/2 exp(im6)], (B4) 

and the dependence of j on 6 is the same as that of j on 
II (the range of the former being now over a strip in the 
complex plane), and only a transform of the radial part 
has taken place. The scalar product in the transform 
space of two such functions can now be calculated USing 
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(B2) and T/ '11* = I pl2 cosh(2 Im6), and an integ:ral rep
resentation of the Macdonald function36 

(j, g)~) = f 2 rJl- Re11 rJl- Im11 v2(T/, 11*) 
I: 

X {jilt (P)(27T)-1/2 exp[im(Re6 + iIm6)])" 

x {g .. (P)(27T)-1/2 exp[im(Re0 + i Im6)]} 

= (2/ 7TV >J
t

+ 1 P 12 dRep dlmp 

x exp[ (1/2v )(up2 + u* p*2)]j", (p)*gm (P) 

xL: dlm6 exp[ - (1/v) 1 pl2 cosh(2 ImO)] 

Xexp(-2mlm0) 

= ft+ d Rep d Imp v2 ... (p, p* )jm (P)*gm (P) 

= (jm,g"')2.m' (B5) 

where v2m(P, p*) is given correctly by (2.: 6). l:ndeed, had 
we used different angle dependence for j and g, a 
Kronecker 1) in their eigenvalue under L12 would appear. 

The problem for the n-dimensional case can be form
ulated similarly: Parametrize the real n-space IR" in 
the usual hyperspherical coordinates where the jth 
component reads Xj = r sinll"_1 ... sinll) COSll)_l for 
1 ,,;j";n-1 (lIo=O) and x"=rcosll"_l' The ranges are 
rE[O,OO), (il E[0,27T), and lIk E[0,7T]for2,,;k,,;n-1. 
Now parametrize the complex n-space ([:" replacing r by 
p and lIk by Ok with pE ([:+. Re6k having the same 
ranges as lIk and37 Im6k E (- 00 , O(). The measure in lR" 
is (/Ix = r"-1 dr (/I-IW"_l with d"-lW"_l = sin"-2 8"_1 dll"_l d"~2W"_2 
and dWl = dlll while, in ([:", (/I ReT/ (/I ImT/ is found from 
the former with the weight function given by the absolute 
square of the weight function in lR". In order to ex
'press the n-dimensional transform kernel (B1) in a 
suitable way, expand the factor exp(- ix -17 /b) in a series 
of Bessel times Gegenbauer polynomials, 311 the former 
in rp/b and the latter in 

cos lIn_l cos0n_l + sinll"_l sin0"_1[cOS lIn- 2 COS0"~2 

+ sinlln~2 sin6"_2(' .. )] 

which can be identified with a degenerate 80(n) ~oo 
function39 and turned into a sum of products of hyper
spherical harmonics in W = {lI)} and O={0j } as 

~ 

exp(- ix . T//b) == (27T)"/2(rp/b)1~"/2~ exp(- i7TI/2) 
1=0 

where the sum over the collective index M runs over 
the allowed SO(n -1):=J ... :=J SO(2) irreducible represen
tation labels. Replacement of (B6) in (Bl) and com
parison with (3.1) gives 

~ 

A"(T/,x) = ~ A"/(p, r) ~ Y:(w)*Y~(O), 
'=0 M 

(B7) 

which is the n-dimensional version of (B3) and which 
tells us, performing the integrations parallel to (B4) 
that the angular dependence of] is the S2,me as that of 
j, with only the additional domain of the angles in the 
complex plane. Finally, in order to show the n-dimen
sional analog of (B5), 

(],g) In) = ft" (/I ReT/ d" ImT/ v"(T/, 11*) 

x [f, (p)Y~(O)]*[ g, (p)Yf(O)] 
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= Jr:+ dRep dlmp Vn, (p, p*)f, (p)*g, (p) 

= Up "it')n!' 

we must prove 

J d"-lReOd"-lImO Yf(O)*Yf(O) exp[- (l/v)'I} ''I}*] 

= (2pp* /rrv)1-n/2K,./2+I_l (pp* /v), 

(B8) 

(B9) 

where the integration ranges over the strips in the com
plex plane of each of the angles as indicated above. The 
direct proof of Eq. (B9) is difficult. Differential or 
recursion-relation manipulations run into hopeless 
multiple integrals or combinatorics. A procedure which 
has allowed the verification of a fair number of individ
ual cases for low 1 is that which uses the fact that (B9) is 
independent of M and shows that the Nth moment of the 
two sides of Eq. (B9) in I pl2 are equal. For this, 
multiply Eq. (B9) by (pp*)2N+n+2'-1 and integrate over 
PEa:+. By using (2.6) and (2.9), the right-hand side has 
the value 

~rr"/ 2v" (2v )1+2N N! r (N + ~n + 1) 

while the left-hand side has become, for ~=V-l/2'1} the 
Bargmann integral over a:n of the absolute square of 
(~2)Ny~W, where 

y: w = [r(~n + 1)/2rrn / 2r(l+ 1 )]1/2(~1 + i~2)' 

is the extreme, normalized, solid spherical harmonic. 
This seems to point out that no true Bargmann-type 
integral tables exist. The separation of n-dimensional 
integrals into radial and angular40 parts can be seen as 
a step in that direction. 

Note added in proof: It has been pointed out by Professor 
M. Toller that the semigroup HSL(2,a:) used here and in 
Ref. 1 has also been exploited in the harmonic analysis 
approach to multiperipheral dynamics. See G. Soliani 
and M. Toller, Nuovo Cimento 15, 430 (1973) and S. 
Ferrara, G. Mattioli, G. Rossi, and M. Toller, Nucl. 
Phys. B53, 366 (1974). A particular case of Eq. (A7), 
for 1=0, appears in C.M. King, M. Sc. Thesis, 
Auburn University (1963), unpublished. 
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The Green's function for Laplace's equation in an infinite-length cylinder with a homogeneous mixed 
boundary condition is considered. Its eigenfunction expansion converges slowly when the axial 
separation between the source and observation points is small compared to the cylinder radius, and 
diverges when the axial separation is zero. Applying a modified form of a contour integral method 
of Watson to an integral representation of the Green's function, a more general expansion of the 
Green's function is derived. Watson's original method had previously been applied to the case when 
the source and observation points were both on the axis of the cylinder. The expansion contains a 
free parameter which may be adjusted to give rapid convergence for any axial separation. It fails, 
however, when the source and observation points are both near the surface of the cylinder. For two 
special values of the parameter, the general expansion reduces to the eigenfunction expansion or to 
the integral representation. The derivation is somewhat obscure, but the resulting formula has a 
simple interpretation as the superposition of the potential of two related boundary value problems in 
finite-length cylinders. Some numerical results are given in the spatial region which previously could 
not be calculated, for a boundary condition approaching a homogeneous Neumann condition, and for 
a homogeneous Dirichlet condition. 

1. INTRODUCTION 

In this paper, the Green's function for Laplace's 
equation in an infinite length cylinder is considered. The 
Green's function satisfies a homogeneous mixed bound
ary condition (a linear combination of the potential and 
its normal derivative vanishes) on the cylinder surface. 
The Green's function for this problem can be repre
sented by an eigenfunction expansion. 1 A difficulty with 
the eigenfunction representation, however, is that when 
the axial coordinates of the source and observation 
points are almost equal, the expansion converges slow
ly, and when they are equal, it diverges. The present 
problem is to find an alternative representation which 
does not have this shortcoming, and can be used to com
pute the Green's function when the axial separation be
tween the source and observation points is small. 

When the two points are both on the cylinder axis, 
Bouwkamp and de Bruijn2 have obtained a rapidly con
verging summation representation in the case of the 
homogeneous Dirichlet boundary condition, USing a con
tour integration method of Watson. 3 By a variation of 
this method, it will be shown that their result can be 
generalized to the case of eccentric source and ob
servation points, as well as to the more general bound
ary condition. The representation obtained contains a 
free parameter which can be adjusted to vary the rate 
of convergence without affecting the value to which the 
representation converges. 

The mixed boundary condition for Laplace's equation 
occurs in biological problems. The interior of a cell is 
a medium of moderate electrical conductivity, a salt 
solution, surrounded by a thin, highly resistive mem
brane. The present analysis was initiated to describe 
the potential induced by a microelectrode current 
source inserted in a nerve axon. The tip of the micro
electrode can be represented by a point source, so in 
this case the Green's function is itself the potential that 
one would observe in the cell. If it is assumed that the 
medium outside the cell is a perfect conductor main
tained at zero potential, then the homogeneous mixed 
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boundary condition applies, that is, for sufficiently 
small membrane current density so that the current
voltage relation of the membrane is in its linear range, 
the normal derivative of the potential just inside the 
membrane is proportional to the potential drop across 
the membrane. 4 

When this membrane boundary condition is written in 
dimensionless variables, in the biological problem the 
proportionality constant E is a small quantity, of order 
10-4 or smaller. Thus the boundary condition is almost 
a homogeneous Neumann boundary condition. Since the 
Neumann problem is not self-consistent (a current 
source inside the cell with no current crossing the 
membrane requires infinite potential inside the cell), 
it is convenient to solve the mixed boundary value 
problem first and then take the limit as the boundary 
condition approaches the Neumann boundary condition. 
This also has the advantage of making the results more 
generally applicable. 

The mixed boundary condition for Laplace's equation 
also occurs in many physical problems. It occurs in 
the description of steady heat flow in a body with heat 
radiation and convection to the surrounding mediumS; 
diffUSion with evaporation at a surfaceS; current flow 
across a thin layer of gas separating a metallic elec
trode and an electrolyte7

; etc. 

In Sec. 2, the mathematical problem is stated and 
solved by Fourier transformation. The potential is rep
resented as a Fourier cosine series in the polar angle 
and a Fourier cosine integral in the axial coordinate. 
This integral representation is converted to an eigen
function expansion by clOSing the contour and applying 
the reSidue theorem. In Sec. 3 a rapidly converging 
summation representation of the potential is obtained. 
This is done using a modified form of Watson's method, 
starting with the Fourier cosine integral representation 
of the potential. The modification is necessary because 
of a branch point of the integrand. The derivation ap
pears obscure, but the resulting formula has a phySical 
interpretation. It is shown that the representation ob-

Copyright © 1974 American Institute of Physics 2112 
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tained, which is valid at the source and in a variable 
finite length of the infinite cylinder, is the superposi
tion of the potential of two related boundary value prob
lems in a finite length cylinder. In Sec. 4, by expanding 
the potential of Sec. 3 in powers of E, the limiting case 
when the boundary condition approaches the Neumann 
boundary condition is considered, and graphs of numer
ical results given. In Sec. 5, by expanding the potential 
of Sec. 3 in powers of E-1

, a Dirichlet boundary condi
tion is considered and graphs of numerical results are 
presented. Although the rapidly converging expansion 
has been obtained for a specific boundary value problem 
o(current interest, it is suspected that the technique 
is of wider applicability. 

2. FORMULAS FOR THE POTENTIAL BY FOURIER 
TRANSFORMS 

In this section we derive an exact representation, as 
a Fourier integral in the longitudinal coordinate and a 
Fourier series in the angular coordinate, for the elec
trostatic potential produced by a point source of current 
inside a right-circular cylindrical cell. The cell is a 
homogeneous, isotropic conductor bounded by a resis
tive membrane which is surrounded by a perfectly con
ducting medium at zero potential. The problem is for
mulated in cylindrical coordinates (r, e, z). The source 
is located at the point (R, 0, 0); the potential satisfies a 
mixed boundary condition at the inside surface of the 
membrane, r=l, and approaches the zero potential of 
the outer surface of the membrane as the axial coordi
nate z approaches plus or minus infinity. The problem 
for determining the potential may be written, in di
menSionless variables, 

1 a ~ av) 1 a
2
v a

2
v 1 -- r- +2~+-2=--o(r-R)o(e)o(z), 

r or or rae 0 z r (1) 

OV 
-(l,e,z)HV(l,e,z)=o, (2) 
or 

V(r, e, ± 00) =0. (3) 

Exploiting the symmetry of the problem, the potential 
for a point source at (R,e,Z), the Green's function, is 
related to the potential V(r, e, z) by G(r, e, z I R, e, Z) 
=V(r,e-e,z-z). 

The problem posed by (1)-(3) can be solved by 
Fourier transforming in the e and z coordinates. De
fining the double Fourier cosine transform of V by 

iJJn(r,k) J: decos(ne)J2dzcos(kz)V(r,e,z), 

V(r, e, z) = 2\1~ dk cos(kz) tEn cos(ne) iJJn(r, k), 
11 0 n·O (4) 

where Eo = 1 and El =E2' •• = 2, noting that V is an even 
function of e and z, we obtain for the transform of (1), 

!. ~ fy aiJJn) _ Ik2 + n2)iJJ =_ !.O(r-R). 
r or ~ or '\ r2 rr r 

(5) 

Transforming the boundary condition (2) by (4) gives 
the corresponding condition on iJJ" at r 1, 

ao~"(l,k) HiJJ,,(l,k) =0. 

Integrating Eq. (5) across the delta function at r=R 
shows that there is a discontinuity in the derivative of 
iJJ" given by 
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oiJJ"(R+ k) _ oiJJ"(R_ k) 
or ' or ' 

(7) 

If the first derivative has the finite discontinuity (7), 
lP" itself must be continuous, 

(8) 

The solution to (5) which satisfies the conditions (6)
(8) is 

EKn(k) +kK~(k) 
- EIn(k) + kI~(k) In(kr)In(kR) 

+{In(kr)Kn(kR), 0,,; r"; R 
In (kR)Kn(kr), R,,; r"; 1 

where In and Kn are the modified Bessel functions of 
order n. 

Taking the inverse transforms (4) of (9), using the 
addition theorem8 

(9) 

i; (e>{In(kr>K,,(kR), 0,,;r";R=K[k{r"+R2 
n.oEnCosn I

rt
(kR)K!1(kr), R";r";oo 0 /2] 

-2rR cose)! 

and the Fourier cosine transform9 

i C 

dk cos(kz)Ko[k(r2 +R2 -2rR cose)1/2] 

= i(Z2 +rz + R2 - 2rR coset1/2, 

yields the expression for the potential 

V(r, e, z) 4~ (Z2 +r2 +R2 -2rRcose)-1/2 

1 C { .. 

- 21f L En cos(nO) dk cos(kz) 
nsO 0 

EKn(k) +kK~(k) 
X €In(k) +kI~(k) In (kr)In(kR). (10) 

As k- 00, the integrand in (10) approaches - cos(kz) 
Xexp[k(r+R - 2)]j2krl/2Rl/2, and thus is rapidly con
vergent unless r + R '" 2, i. e., unless the source and 
observation points are both near the boundary. 

Equation (10) can be converted to an eigenfunction ex
panSion by considering the real part of the contour 
integral 

f Iwlel EK.(w) +wK~(w) 
dwe Eln(w)+wI~(w) In(wr)In(wR)=O (11) 

where the contour in the w k +i~ plane goes out the 
positive real axis [the integration path in (10)], then 
along a circular arc in the first quadrant, and finally 
down the imaginary axis, with detours around the zeros 
of the denominator and the branch point at the origin. 
The zeros occur on the imaginary axis at w = i~n,. where 
An,. is the sth positive root of 

EJn(h" •• ) +An,.J~(h".s)=O (12) 

arranged in order of ascending magnitudes, with s 
= 1,2,3· ". The contour integral is zero because no 
Singularities are enclosed. The integral along the cir
cular portion vanishes exponentially as the radius be
comes infinite, provided that r + R < 2 (i. e., the source 
and observer are not both on the boundary). Hence, by 
the residue theorem, the integral in (10) equals the real 
part of the sum of 11i times the residues at the poles on 
the imaginary axis and the principal value of the integral 
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up the imaginary axis. The latter integral, when sub
stituted in (10), cancels the (Z2 + r + R2 - 2rR cos8t1

/ 2 

term. The result is the eigenfunction expansion, 

1 .. 
V(r, G, z) = -2 :0 En cos(n8) 

1T nsO 

~ An,s exp(-Xn,a Iz) JiXn,sr)Jn(Xn,.R) 
XLI 2 2 2 J 2(') (13) 

$.1 A::,.+E -n n"-n,. 

which is equivalent to (10), The details of the derivation 
to obtain (13) from (10) are not given, since (13) is a 
special case of (23), which will be derived below, and 
because (13) has been given elsewhere. 1 

The double sum in (13) converges rapidly because of 
the exponential factor exp( - An, s I z I ) at positions for 
which the longitudinal coordinate satisfies I z I ? 1. In 
this case (13) is a convenient representation for numeri
cal computation of the potential. 1,10 On the other hand, 
(13) converges slowly when I zl« 1, and diverges on the 
whole disc z = 0, and hence is not a useful representation 
for computing the potential under these conditions. The 
integral representation of the potential (10) does not 
have this pathological behavior at z = 0 because the sin
gularity at (R, 0, 0) is isolated in the (Z2 + r + R2 
-2rRcos8)-1/2 term. In the next section, a summation 
formula will be derived in which the (Z2 +r + R2 
-2rRcos8)-1/2 singularity is isolated. 

3. CONVERGENT EXPANSION AT z==Q 

In this section we consider the problem of computing 
the potential near z = 0, where the eigenfunction ex
pansion (13) converges slowly. A more general summa
tion representation for the potential is developed in which 
the singularity at (R, 0, 0) is explicitly isolated, as in 
the integral representation (13). The general represen
tation contains an adjustable parameter to vary its con
vergence rate without changing the value to which it 
converges. It reduces to (10) or (13) for two special val
ues of the parameter. The representation can be made 
rapidly convergent on the disc z = 0, except when both 
source and observation pOints are near the boundary 
(i. e., except when r + R:::: 2). This limitation is a con
sequence of the poor convergence of (10) when r+R 
::::2. The method used to obtain this representation of 
the potential is a variation of one used by Watson to 
develop rapidly convergent sums for computing integrals 
of the form f; dt t2 .... 2n/I~(t). 3 

Watson's derivation begins by considering the judi
ciously chosen contour integral ¢ dw w2v+2n /(w 
- t)I~(w) COS(7TW/i3) taken around the circular contour Iw I 
="". Replacing the contour integral, which equals zero, 
by 2 7Ti times the sum of the residues at the poles yields 
a partial fraction expansion for t2v

+
2n /I~(t) cos( rrt / (3). A 

multiplication by COS(7Tt/{3) recovers the original inte
grand and a subsequent integration over t from zero to 
infinity gives an infinite sum representation of the de
sired integral, containing the parameter {3 for adjusting 
the convergence rate. Bouwkamp and de Bruijn2 used the 
same contour and the same factor (w -t)cos(rrw/{3)]-l to 
evaluate f; dt sin(tz)/tPo(t) , which appears in their for
mula for the electrostatic potential on the axis of a di
electric cylinder bounded by a perfect conductor, with a 
point source also on the axis. 
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For the more general problem being considered here, 
where the source and observation points are allowed to 
be off-axiS, a modification of the contour and multipli
cative factor in the integrand is necessary before the 
technique can be applied. The modifications are some
what arbitrary, their ultimate justification being that they 
lead to a useful formula for calculating the potential. 

Extending the integrand in (10) into the complex w
plane, with w=k +iA, the integrand is seen to approach 
infinity exponentially for I w 1- "" in the left half-plane. 
Therefore, the contour must be restricted to the right 
half-plane. Furthermore, Watson's circular contour 
would not be permissible because of the branch point of 
Kn(w) at w=o. Since we are restricted to the right half
plane, we try the contour shown in Fig. 1, with the hope 
that we will be able to deal with the resulting principal 
value integral along the imaginary axis, which did not 
appear in Watson's analysis. 

We are still free to select an extra multiplicative 
factor in the integrand of (10), and need not be limited 
to Watson's choice. Before making this selection, we 
study the form which the integrand in (10) takes on the 
imaginary axis. Expressing the modified Bessel func
tions in (10), in terms of ordinary Bessel functions, we 
obtain for the integrand on the positive and negative 
imaginary axes, respectively, 

cosh(Az) 

x d( nl exp(± i7T /2) I X IJ + exp(± i7T /2) I A IK~[ exp(± i7T /2) I X IJ 
El)exp(±i7T/2) IX I] + exp(±i7T/2) IX II~[exp(±i7T/2) IX I] 

x In[exp(± i7T /2) IX I r]I Jexp(± i7T /2) I X IRJ 

7T (~Y.,(IXI)+ IXIY~(1xl) ) 
=- 2cOSh(XZ)\EJn(lAI)+IAIJ~(IAI) ±i 

xJn( I X I r)Jn( I X IR). (14) 

The real part of (14) is an even function of A, whereas 

i>- W PLANE 

i >-n,3 

i>-n,2 

i>-n,1 

BRANCH LINE ~ 
k 

-3{312 - t -{3I2 

i >-n,1 

i>-n,2 

i>-n,3 

FIG. 1. Contour for the integral of Eq. (15). 
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the imagInary part is odd. If we choose our extra mul
tiplicative factor to be an odd function of w, we can 
eliminate the real part of (14), and hence the poles, 
from the integral along the imaginary axis and it is no 
longer 4l. principal value integral. The simplest such 
factor which has all the necessary properties of 
Watson's factor (what is necessary will be more ap
parent later), but yet is an odd function of w, is the 
function. w/(w2 

- t2
) cos( 1TW / f3}. 

Thus we are led to consider the contour integral 

1 f EKrI.,w)+wK\,(w) 
27Ti. dw cos(wz) EJ,,(w) +wI~(w) I.(wr)I.(wR) 

(15) 

where the integration path is given in Fig. 1. There is 
a braneh cut along the negative real axis. (3 and tare 
positive real parameters, and cos(1Ji/{3)* 0, so that the 
poles introduced are simple and distinct. If I z I < 1T/ (3, 
and r + R < 2, the integrand along the semicircular arc 
tends 1:0 zero exponentially as the radius of the circle 
tends to infinity. There are no singularities enclosed by 
the contour so the integral (15) is zero. Therefore, the 
sum of 1/27Ti times the integral up the imaginary axis, 
one-half times the residues on the imaginary axis, and 
the residues on the real axis is zero. 

The residue at w = t is 

t!:.~.(t) + tK~(t) I (tr)I (tR) cos(tz) 
EJn(t) +tI~(t) n • 2 cos(1Ji/{3) 

(16) 

Note that 2 cos( 7Tf/ (3) times (16) is the integrand in (10). 

Substituting (14) in (15), we find that 1/2m times the 
integral up the imaginary axis is 

1. r- cosh(Az) ,\ 
- "2Jo dA cosh( 7TA/ (3) A 2 + t2 J.(i\r)Jn(AR). (17) 

The residues atw=(v+t){3, v=0,1,2,'" are 

.§.( _)" (v +t ){3 cos[(v +t ){3z] 
-li' (v+t)2ff-t2 

X EK"[(v +t ){3] + (v +t ){3K~[(v +t ){3]. 1 1 

-EJ.[(v +t ){3] + (v +t )!3l~[(v +t ){3] In[(v +"2 ),Br]I.[(v +"2 )(3R] 

(18) 

and the residues at w = ± ii\, •• are 

A~.s cosh(A .... z) 
(A~,s +E2 - n2)(~,s +t2) cosh( 7Ti\,,i (3) 

J .(A •.• r)J .(A •. ..R) x . 
J!(i\, •• ) 

(19) 

Since the contour integral (15) vanishes, the residue 
at w =t, (16), is equal to minus 1/21Ti times the integral 
u.p the imaginary axis, (17), minus the residues at w 
== (v +t )(3, (18), minus one-half times the reSidues at 
lV=± ii\, ... , (19), or, 

EK n(t) + tK~(t) cos(tz) 
EJn(!) +tI~(t) 2 cos (7Tt/{3) In (tr)I,,(tR) 

11" AJ.(Ar)J.(AR) 
="2 0 d,\ cosh(i\z) (,\2 +t2 ) cosh(7T'\/ (3) 
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{3 .. "EK.[(v+ tW]+ (v+ t)I3K~[(v+ t)l3] 
+ -;;: E(-) EJn[(v +t ){3] + (v +t )!3l~[(v +t ){3] 

x (v +t){3cos[(v +t){3z] 1[( +'!')Chv]I [( +.!.){3R] 
(v +t Y ff _ t2 • V 2 IJ' • V 2 

.. A~,s cosh(A •• sz)J .(A.,sr)J.(A.,sR) 
- ~ (~ •• +E2 _ n2)(~ •• +t2) cosh(7Ti\,,s! (3):i;(i\,.s) . 

(20) 

We now multiply (20) by 2 cos(7Tf/{3), and integrate over 
t from zero to infinity. The left side is then the integral 
to be evaluated in (10). The three integrals on the right 
side can be evaluated USing two tabulated integralsll so 
that the desired integral in (10) may be expressed as 

1
.. d:(.(t) + tK~(t) 

° dt cos(tz) €l.U) +tl~(t) I. (tr)I.(tR) 

7T r" exp( - 7TA/ f3} 
= "2 J 0 di\ cosh(Az) cosh(7Ti\/ (3) I n (Ar)Jn (AR) 

.. 1 EK"[(v +t ){3] + (v +HaK~[(v +t ){3] 
+ {3?; cos[(v +"2){3z] €l.(v +t){3] +(v +t)!3l~(v +t){3] 

Xln[(v +t ) {3r]In[(v +t )(3R] 

t A.,s cosh(A.,sz) exp(-7TA ••• /I3)J.(A".sr)J"(A,,.sR) 

- 7T s:~ (~.s +€2 - n2) cosh( 7Ti\,,i (3)~(i\,.s) 
(21) 

To obtain the potential we must multiply (21) by 
-Encos(n8)/2~, sum over n, and substitute the result 
in (10). Performing these operations on the integral 
on the right side of (21), noting that 

exp( - 1TA/ (3) ~ ()m+1 ( 
2 cosh( 7TA/ f3) = ~1 - exp - 27Tm,\/ f3}, 

and using the addition formula for Jo, 12 we obtain 

1" 10" -4 L;(-)m dA{exp[-,\(z + 27Tm/(3)] 
7T m=l 0 

+ exp[A(z - 21Tm/ (3)J}Jo[i\(~ + R2 - 2rR COS8)1/2] 

= 4
1

7T C~ .. +~) (_)m [(z - 2~m r +~ +R2 

_2rRcOS8r1/2, Izl<27T/{3 (22) 

where a Bessel function integral13 has been used to ob
tain the right side of (22). We see that the free-space 
potential of the point source, which appears in (10), is 
just the miSSing m =0 term of the series in (22). 

Substituting (22) in (21) and the result in (10) yields 
a summation representation for the potential: 

1" [I 27Tm)2 V(r, 8, z)= 47T m~ (_)m \z - -{3-. +~ +R2 

- 2rR COS8J -1/2 

(3 .. .. - w ~o En cos(n8) ko COS[(V +t ){3Z] 

EK,,[( v + t)l3] + (V + t)I3K~[ (V + t){3] 
X -EJ-::"n"'[ ('--V-+'t') (3"",,]'--+-;('--V-+'t') (3l----,~ [,.,.-( V-+-t"')-{3"-] 

XI,,[(v +t),Br]I.[(V +t){3R] 

1 .. .. cosh(A. sZ) 
+ - L; E. cos(n8) L; • 

1Tn:Q &:11 +exp(27TA ••• /{3) 
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Xn.aJ n(Xn.ar)J n(>"'n,sR) 

x <>'=.3 _n2 +€2)~(;\n,.) • 
(23) 

Equation (23) is an alternative to our original formu
las (10) and (13), which is much more suitable for cal
culating the potential near and at z = O. We will now dis
cuss the numerical characteristics and physical inter
pretations of the three terms in (23). 

The first term in (23) is the sum of the free-space 
potentials of the source at (R, 0, 0) and an infinitenum
ber of images located at (R, 0, ± 27Tm/(3) , m = 1, 2, 3,' .. , 
with alternating signs. These are the images obtained 
by reflecting the source in the planes z = ± 1(/ {3, then 
reflecting the two images in these two planes, and so 
on. It is interesting to notic'e that the two planes z 
= ± rr/ {3 are part of the boundary of the region of conver
gence of the contour integral (15). The images are 
located inside the cylinder, but outside the region of 
validity of (23). The sum can be recognized as the po
tential of a point source at (R, 0, 0) with two pe rfectly 
conducting planes (homogeneous Dirichlet boundary con
dition) at z = ± rr/ {3. An equivalent eigenfunction expan
sion can be obtained, either directly, or from the image 
expansion in (23). Adding the m = 0 term to (22), we 
find 

l:; (_)m[(z - 27Tm/W +~ +R2 -2rR cosetl/2 
m~-

= r- d>.. lexp( _ X I z I) _ cosh(Xz) exp( - m .. / (3») 
Jo ~ cosh( rr>../ (3) 

XJo[>"(~+ R2 - 2rR cose)1/2] 

=f- d>.. ( exp(->..I zl) exp(>..1 zl) ) 
1 +exp(-21T>../{3) - 1 +exp(2rr>../{3) 

o 

xJo[>"(~ + R2 - 2rR COS)1/2]. 

On the last line we have rewritten the integrand in a 
form which clearly displays that it is an odd function of 
>... This allows us to replace the integral byl4 

1 r-d [exp(-blzl) eXP(bIZI)] 
"2J _ b 1 +exp(-2rrb/{3) - 1+exp(21T b/i3) 

XHcil) [b(r2 +R2 - 2rR cose)I/2] 

which may be evaluated by closing the contour with a 
large counterclockwise semicircular path in the upper 
half b-plane. Calculating 2m times the sum of the resi
dues at the poles at b = ± i(v +t){3, V= 0, 1, 2, "', we 
obtain an equivalent eigenfunction expansion, 

= ~v~cos[(v +t){3z]Ko[(v" nB(r2 +R2 

- 2rR cose)1/2]. (24) 

The eigenfunction expansion on the right Side of (24) 
is rapidly convergent if {j."r2 +R2 -2rR cose)l/2 is not 
too small, in which case the terms decrease exponen
tially in magnitude. When this is not the case, the image 
expansion should be used. (In the computations for the 
curves given in Secs. 4 and 5, for convenience, we al
ways use the image expansion, but we use a nonlinear 
sequence-to-sequence transformation, the diagonal of 
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the Pade table, 15 to improve its convergence.) 

Since the singularity in the potential has been :isolated 
in the m = 0 term of the image expansion, we do not ex
pect the remaining terms in (23) to have pathological be
havior at z = 0 as did the eigenfunction expansion (13). 

In the second term of (23), the sum over v has the nu
merical interpretation that it is a discrete rectangular 
apprOximation, with spacing {3, for the integral over k 
in (10). The sum of the image potentials and the last 
term in (23) (the double sum over nand s) then repre
sents the correction to this rectangular approximation. 

In addition to this interpretation, which is interesting 
from the point of view of numerical analysis, a physi
cal interpretation of the double sum over n and v is also 
possible. Using the addition theorem for K o, 8 the image 
expansion in (24) can be written as the double sum 

2~ .tEn cos(ne) l:;cos[(v +t )(3z ]Kn[(V +t )/3r]In[(v +t )/m] 
1T na() v-o 

(25) 

for r >R, or the same expression with rand R inter
changed, for r <R. As a consequence, we see that U'le 
sum of the image expansion (24) and the "rectangulajr 
approximation" [the sum over n and v in (23)] satisfi,es 
the homogeneous mixed boundary condition (2) at r= 1. 
Furthermore, they each satisfy a homogeneous 
Dirichlet boundary condition at z =± 1T/(3. Therefore, to
gether, these first two terms in (23) represent the soliu
tion to the problem of a point source at (R, 0, 0) inside 
a finite length cylinder with homogeneous Dirichlet 
boundary conditions at both ends, z = ± rr / (3, and the 
homogeneous mixed boundary condition (2) on the cy
lindrical boundary, r = 1. It should be mentioned that 
another eigenfunction expansion can be obtained for this 
problem. It is 

21 I>n cos(ne) tsech(rrAn •• / (3) sinh [An"(:!!.{3 -I z I)] 
1T n~ .0=1 

x \n.aJn(Xn,sr)Jl~·n • ..R) 
(X! •• _n2 +e2)~(>"n • .o) 

(26) 

in which the eigenfunctions are the same as those in (1~3). 
The expansion (26) may be obtained starting with the 
eigenfunction expansion (13) for the infinite cylinder and 
USing the method of images as has been applied to the 
corresponding Dirichlet problem. 16 It may be observed 
that (26) has the same divergence problems as (13) at 
z=O. 

Having two interpretations of the rectangular approxi
mation sum, we now look at its convergence proper
ties. For large v, the Fourier coefficients in the sum 
over v approach - exp[ - (v + t )(3{2 - r - R)]/ (2v 
+ 1)(3r1 / 2R 1

/ 2 , so that the terms decrease exponentially 
with increaSing v, and the sum converges rapidly, ex
cept near r=R=1. For fixed v, the terms in the sum 
over n approach r"Rn/2n for large n. Consequently, this 
sum over n is also nicely convergent, except near r=R 
=1. 

Finally, the last term in (23) (the double sum over n 
and s) looks like the eigenfunction expansion in (13), ex
cept for the important difference that the exp( - >"n • .o I z I) 
factor is replaced by cosh(xn.sz)/[l +exp(21T>"n • ./{3)]. With 
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an appropriate choice of {J, this makes the sum rapidly 
convergent for any z, including z = 0. The sum conver
ges for I z 1 < 2.,,1/3, which is twice the range for which 
(15) converges. 

On the cylindrical boundary r= 1 the double sum sat
isfies the mixed boundary condition (2). If we let z = 
± ."I{J, the double sum reduces to (13). Therefore the sum 
represents the source-free potential which satisfies (2) 
on r=l and equals the true potential (10) or (13) on the 
planes z = ± 1TI f3. 

The derivation of (23) implies that it is valid for 1 zl 
<1TI{3, but Since all terms in (23) are convergent for 
1 z I < 21T I f3, by analytic continuation (23) must be valid for 
this larger range. Our physical interpretation of the 
terms in (23), however, does not have meaning in the 
range 1T/ f3~ 1 zl ~ 21T/ /3. Because the parameter {3 is ar
bitrary, it can be chosen to make the formula converge 
rapidly in the vicinity of z = 0. The rate of convergence 
and the value of each sum in (23) depends on {J, but the 
total value of (23) is, of course, independent of {3. Near 
r + R = 2, however, the rectangular approximation term 
converges slowly, for any reasonable choice of {J. 

As mentioned previously, there are two limiting cases 
for which (23) reduces to (10) or (13). In the limit {3 
- 0, all but the m = 0 term in the first sum vanish (the 
images move off toward z = ± 00), the second sum van
ishes, and the sum over 8 approaches the integral in 
(10). Hence, when {3=0, (23) reduces to the integral 
form (10) for the potential. When {3= 1T/I zl, the sum 
over m vanishes because of a cancellation of the m 
=1,2,3,'" terms with the m=0,-I,-2~'" terms, 
respectively (the infinite array of point sources are in 
an antisymmetric arrangement around the planes z = 
± 1TI (3); the sum over v vanishes because of the 
cos[(v +t )71'1 factor and the sum over nand 8 reduces to 
the double sum in (13). 

4. BOUNDARY CONDITION APPROACHING 
NEUMANN CONDITION 

We would now like to study the potential for small E, 

that is, as the boundary condition (2) approaches a Neu
mann boundary condition. This is the case of biological 
interest in which the interior of a cylindrical cell is 
enclosed by a highly resistive membrane. It is not pos
sible to allow E to equal zero, because the problem be
comes singular. This singularity occurs because if E 

= 0, no current can cross the membrane; all the current 
injected at (R, 0, 0) would travel inside the cell toward 
z = ± 00. Consequently, the potential would contain a 
term decreasing linearly with 1 z I, so that the difference 
in potential between a finite z and z=oo would be infinite, 
in violation of the I z I = 00 boundary condition. It will be 
seen that the potential approaches infinity as E-1/2 when 
E goes to zero. 

We will first consider the E- 0 limit of (13), then re
turn to consider (23). We obtain this limit by expanding 
the double sum ove r nand s, appearing in (13) in powe rs 
of E. This is accomplished by expreSSing An,.' the roots 
of (12), in terms of j~,s, the roots of (12) with E = 0, It 
should be noted that AO,l is an exceptional case since 
AO,l - ° as E - 0, whereas all other An,s approach posi
tive values. Thus, 
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An,s-j~,., n=I,2,3, ••• , 

~o,s - jb,s"l' 

'" -0 "0,1 

8=1,2,3", ., 

s=2,3,4, ... 

as E - 0, where the j~,s are the positive roots of 
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(27) 

J~(j~,s)=O (28) 

arranged in order of ascending magnitudes, with 8 

= 1, 2, 3, •• '. This is the notation used by Watson. 17 

Letting n = ° in (12) and expanding around A = 0, leadS 
to a series for E in powers of Ao,l> the reversion of which 
gives 

A - (2E)1/2 [1 _ .!:.E + _5_ 102 _ ••• J 
0,1- 8 384 (29a) 

which expresses the smallest root of (12) in terms of 
E.18 

The other roots An,s are found in a similar way by ex
panding both sides of (12) around the corresponding 
pOints j~, s' The resulting expansion of the root An, .. n 
= 1, 2,3, ••• , 8 = 1 , 2, 3, .•• about the point j~, s is 

. ( E (j~~s + n2
)e2 ~ =' 1 + - +0103 i\",s )n,s j,2 _ n2 2()·,2 _ n2)3 () 

n"s n,s 
(29b) 

and for n=O, 8 =2, 3, 4,0", 
_ ., E E2 3 

Ao,s-JO,s-l +-.,-- -2.,3 +O(E) (29c) 
}O,s-l 'lO,S-l 

Substituting (29a, b, and c) in the representation (13) 
for the potential, we obtain an expansion for the poten
tial in powe rs of E, 

X [E-1/2 + tEl /2( t- r2 _ R2) 

+ fsE3/2(¥ +r4 _ 3r2 +4r2R2 _ 3R2 +R4) + 0(E5/ 2)1 

+ -2
1 tEn cos(nO) t exp [-j~,.1 z 1 
1T n=O s=l 

x (1 + .,2 E_ 2 + 0(€2)\] 
In,. n 'J 

j~,s '(J n(j~,s r)J n(j~,.R) E 
X .,2 2 ~(.,) - ( .,2 2)~(") 

In,s - n n lrr,s In,s - n n )n,. 

{
j' +n2 d } ) 

X j'~'S _ n2 - j~ •. s"iT"" {In(j~,sr)Jn(j~ • .R)} + 0(E
2

) • 

n,' In,_ (30) 

The expansion (30) demonstrates the singular behavior 
in the limit of E approaching zero. The first term (the 
exponential times the series with algebraic terms) ori
ginates from the n = 0, 8 = 1 term of (13). It contains a 
factor which decays exponentially in 1 z 1 , with a length 
constant which, in the E - ° limit, approaches infinity 
as e l/2

• The series multiplying the exponential starts 
with E-

1
/

2
, so that the potential also approaches infinity 

as 10-1/2 in the E- ° limit. 

The next higher order part of the potential is the 0(1) 
part of the double sum over nand 8. This contains the 
(Z2 +r2 +R2 - 2rR cosO)-1/2 singularity at the source 
point (R, 0, 0) so that at pOints close to the source (with
in a distance of order El/2) it is comparable to the 
O(Cl/2

) term. 
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For sufficiently large I z I each term in the double sum 
over n and s is exponentially small compared to the first 
term in (30), since each j~,s is positive. In the far field, 
which we define by taking the limit £ - 0 while holding 
(2£)1/21 zl fixed, the potential is given asymptotically by 
the first term alone: 

2
1
/
2 

[ (£ 5£2 )~ V(r, 8, z) - 4-;r exp - (2£)1/21 z 1 1 - 8" + 384 + 0(£3) ~ 

x ( £-1/2 +t£1/2(~ _ r _ R2) + 

+4rR2 _ 3R2 + R4) + 0(£5/2»). 

Note that the far field expansion is indedependent of 8 
but its higher order terms do depend on radial position 
rand radial location of the source R. This expansion for 
the far field can also be obtained as the outer expansion 
in a singular perturbation analySiS of the present prob
lem by matched asymptotic expansions. 19 

Taking the E - 0 limit of (30), holding z fixed, we ob
tain the ne'ar field expansion, 

(2£>-1/2 I zl 1 ~ 00 

V(r, 8, z) = -2- - -2 + -2 I) En cos(n8) I)exp(- j~ s 1 z I) 
7T rr rr n=O 5=1 ' 

. , J ('f )J ('f~) ()1 /2 
X In,s "In,sr n I n,$'' 2E 15 2 2 . .2 R2) 

---'~':;--'-=-"","""-io:-:-..c..:..:.-r- + ---,- + z -,.-
(j~~s - n2)~(j~,s) 8rr 4 

+0(£), (31) 

where we have omitted 0(£) terms for brevity. The O(E) 
term is given elsewhere, 19 where (31) is obtained as the 
inner expansion uSing the method of matched asymptotic 
expansions. From (31), it can be seen clearly that in 
the near field region the potential inside the cylinder 
consists of a large constant term of order £-1/2, a term 
decreasing linearly with increasing I z I, an expansion in 
the eigenfunctions of a perfectly insulated (E = 0) cylinder, 
and higher order terms. 

The near field expansion (31) is valid when the linear
ly decreasing term is small compared to the constant 
term, i.e., when I zl« (2£>-1/2. For typical values of £ 
found in biological cells, (31) will be applicable for val
ues of I z I between zero and many times the cell cross
sectional radius. However, it suffers from the same 
poor convergence rate when I z I is much smaller than 
the radius, as did the expansion (13) for arbitrary E. 
Therefore, the rapidly converging form (23) should be 
specialized to the near field, small £ limit to obtain a 
rapidly converging substitute for (31) when I zl« 1. 

Using the same procedure on (23) as was used to ob
tain (31) from (13), i.e., substituting (29a, b, and c) 
in (23), and taking the limit as £ approaches zero with z 
fixed, we obtain the general form of the near field ex
pansion (31), 

(2£>-1/2 1 1 ~ 
V(r, 8, z)= -- - - + - I) (_)m 

2rr 2 ~ 41T m=-oo 

x [(z - 2rrm/ ~)2 +r + R2 - 2rR cos 8]-1/2 

- 2~' t£nCOs(n8) I;cos[(J) +t)~z] 
7r rr=O vwO 
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1" 00 h(') + - I)£ cos(n8) I) cos J",sz 
rrn.O n s=11+exp(2rrj~ .. .7~) 

xj:"~~(j'".s:)Jn(~~~) +0(£1/2). 
(J",s - n )~(J",s) 
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(32) 

The curves in Figure 2 are the results of numerical 
computations using (32) for I zl <rr/~ and (31) for I zl 
> rr/~. The 0(1) term in the potential V(r, 0, z) is plot
ted as a function of z for R = 1 and 8 = 0 for several 
values of r between r=O. 9 and r=O, and for 8=1T 
and r=O. 9. 

The value of ~ used in (32) and the number of terms 
required to attain convergence in each sum in (31) and 
(32) (to three decimal places for obtaining the curves) 
depends on the value of r + R. When r + R approaches 2, 
as has already been observed, convergence of the first 
double sum (over n and J) in (32) becomes increasingly 
slow. We are forced to take more terms in the sum 
over n, but the convergence rate of the sum over J) can 
be improved by increaSing the value of ~. Increasing ~, 
however, reduces the convergence rate of the last double 
sum (over n and s) in (32), so some compromise value 
of ~ must be taken. As r + R varies between zero and 
1. 9, reasonable chOices of f3 seem to vary from about 
2 to 16 . 

For computation of the most slowly convergent cases 
in Fig. 2, the two curves for which R = 1. 0, r=0.9, we 
have set f3 = 8. To obtain three decimal place accuracy, 
in the sum over n and J), we let n go from 0 to 50 and J) 

from 0 to 8, and in the sum over n and s, let n go from 
o to 13 and s go from 1 to 3. The latter sum converges 
most slowly at the largest value of I z I for which it is 
used, at I zl = rr/8. At smaller values of I zl, less terms 
are required. The Bessel functions in (31) and (32) were 
computed USing their recursion relations, and the loca
tion of the zeros, j~,s, were taken from tables. 20 

> 

a 
Q. 

o 

At the opposite extreme, the most rapidly convergent 

R=f 
8=0 

-0.4 L.........-..L_~_..L-~L.......--'-_--'-_..L-~L.......--'--;----' 
o 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

Iz I 

FIG. 2. The 0(1) term in the E-expansion of the potential as a 
function of I z I , for the boundary condition approaching a 
homogeneous Neumann condition, with R = 1, 8 = 0, r= 0.0, 
0.3,0.5,0.6,0.7,0.8,0.9, andR=l, 8=7T, r=0.9. 
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1.6 

0.0 
1.4 

r=R=Q5 

1.2 

1.0 

0..8 
> 
'0 -0; 
a. 

0..4 
~ 

0 

0. 
1.0 

-0.2 
2.0 

-0.40. 
0..27r 0..47r 0.67r 0.87r 

8 

FIG. 3. The 0(1) term in the <,,-expansion of the potential as a 
function of e, for the boundary condition approaching a homo
geneous Neumann condition with r=R=O. 5, I zl =0.0, 0.1, 
0.2., 0.4, 1. 0, and 2. O. 

case in Fig. 2 is that of R=I, r==O. In this case we set 
13=4. Because of the cylindrical symmetry only the n 
= 0 terms are present. To obtain three decimal place 
accuracy we need only the II == 0 and S = 1 terms. 

The sum over the source and images in (32) was com
puted USing a nonlinear sequence-to-sequence transfor
mation. We start with the decreasing sequence sm with 
So equal to the m = 0 term in the image expansion, and 
sm(m = 1, 2", ,) equal to the sum of the ± m terms of the 
image expansion. This sequence is then transformed to 
the sequence of diagonal elements of its Pade table. 15 

The Mh diagonal element is a ratio of two NXN deter
minants which utilize the first 2N +2 terms of s.,. As an 
example, for the R == 1, r = O. 9 case, three deCimal 
place accuracy is attained in the third diagonal element, 
which requires computation of two 3 X3 determinants, 
utilizing the m = 0, ± 1, ± 2, ... ,± 7 terms of the image 
expansion. Using the equivalent eigenfunction expansion 
(24) in this case requires 16 terms. 

In Fig. 3 the 0(1) term in the potential V(O. 5, e, z) is 
plotted as a function of e, for R == 0.5 and z = 0, 0.2, 
0.4, 1.0,2.0. We set 13=4, and to obtain three deCimal 
place accuracy in the first double sum let n go from 0 
to 3 and s go from 1 to 2. In this case one cannot use 
the eigenfunction equivalent, (24), of the image expan
sion because it diverges when r=R. 

5. BOUNDARY CONDITION APPROACHING 
DIRICHLET CONDITION 

We now turn to the opposite extreme of large E, in 
which the boundary condition approaches a Dirichlet 
boundary condition. When E = 00, the problem represents, 
for example, that of the electrostatic potential in a di
electric cylinder surrounded by a grounded perfect con
ductor. The E - 00 limit is not singular, in contrast to 
the e - 0 limit. Rather than set E = 00, however, we use 
the same procedure as in Sec. 4 to obtain the potential 
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correct to 0(e-1
) in the € - 00 limit. The solution can be 

applied to the description of steady heat flow in a cylin
der for which the heat transfer coefficient to the sur
roundings is very large, or diffusion of a liquid in a 
porous rod, evaporating at a rapid rate into the sur
rounding atmosphere. 

In the E - 00 limit, 

A.".s-jn ... n=0,1,2,"', s=I,2,3,"', 

where the jn •• are the positive roots of 

JnUn) =0 

(33) 

(34) 

arranged in ascending magnitudes, again USing the nota
tion Watson. 17 

The root A.",. can be expressed in terms of jn.s by a 
series in ascending powers of e"1. The series is obtained 
by reversion of the expansion in powers of An •• - jn.s of 
(12). Substituting the series for A.",s in the eigenfunction 
expansion (13), we obtain the expansion in powers of 
e-1 for the potential 

V(r, e, z) = 21 ten cos(ne) t exp{ - jn,s I z I [1 - €-1 + 0(e-2
)]} 

1r I'l'=O szl 

This is the large-E analog of (31). 

Setting € = 00 in (35), we obtain the potential for the 
Dirichlet boundary condition16 

V(r, e, z)== 

1.. ~ ( e) ~ . exp( - j n,. I z 1 )J n(j n'" r)J n (j n,..R) 
2 u€n cos n L..J . '" (. ) 

V 

1T "310 sal 1n,S"n+1 In,s 

1.0 

0.9 

0.8 

0..7 

0..6 

0.5 

0..4 

0..3 

0..2 

0..1 

0.0. 

I 
I 
I 
I 
\ 
\ 
\ 
\ , 
\ 
\ 
\ 
\ 
\ 
\ 1 
\ 47r/ZI 
\ , 

0..2 

, , , 
.... 

&=0 

' ...... 
OD .......... ---_ 

------------

0..4 0..6 0..8 
Iz I 

1.0. 

(36) 

FIG. 4. The potential as a function of I z I for a homogeneous 
Dirichlet boundary condition with e = 0 and r= R= O. 0, 0.6, 0.8, 
0.9 (solid curves) and 1!47T I zl , the free-space potential at 
(R,O,z) of a point source at (R,O,O) {broken curve!' 
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This eigenfunction expansion is useful for computing the 
potential when I z I ;;: 1. When I z I « 1, we need the E 
- 00 limit of (23), which can be obtained by the same 
procedure used to obtain (36). We find, for the general 
representation of the potential with a homogeneous 
Dirichlet boundary condition, 

- 2rR cose]"1/2 

- 2~ t E"cos(nO) t cos[(v +t ),8z] 
1f ":.0 .,.0 

1 .. 
+ -2 L:En cos(nO) 

71' "-0 

(37) 

When r=R=O, (37) must be equivalent to Eq. (28) of 
Bouwkamp and de Bruijn. 2 A numerical comparison of 
the two equations shows that they agree, although there 
does not appear to be a simple way to show this equiva
lence analytically. 

The curves in Fig. 4 are plots of the potential 
V(r,O,z)forO=Oandr=R=0.9, 0.8, 0.6, 0.0. To 
obtain the first two curves we set ,8= 8 and use (37) in 
the range 0.,,; Izl <1T/8 and (36) in the range 1T/8 <Izl 
.,,; 1; to obtain the last two curves we set .a = 4 and use 
(37) in the range 0.,,; I zl <1T/4 and (36) in the range 
1T/4 < I z I.,,; 1. The dependence of the convergence rate on 
r + R is essentially the same as in the examples cited for. 
the Neumann boundary condition computations in Sec. 4. 

The broken curve is the free-space potential of the 
point source 1/41T I z I plotted for comparison. It is seen 
that the potential approaches zero more rapidly than the 
free-space potential at a rate that increases as the 
source approaches the surface of the cylinder. 
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The Tomimatsu-Sato (TS) solutions of the Einstein field equations are studied in several limiting 
cases. In the weak-field limit we construct two Newtonian models for the source. one consisting of a 
rotating disc of radius a In. the other made up of n complex point multipoles. The "extreme" limit 
q = I is also examined in detail. and we find there are many distinct ways of taking this limit. We 
are thereby led to a new two-parameter family of exact solutions which. unlike the TS metrics. are 
not asymptotically flat. 

I. INTRODUCTION 

Recently Tomimatsu and Satol have found a series of 
exact solutions of the Einstein vacuum field equations 
which they claim are suitable to represent the gravita
tional field of a rotating body. This would only be the 
second time such a solution has been discovered, the 
previous example being the Kerr metric. Further in
vestigations by Glass2 and by Gibbons and Russell-Clark3 

have shown that the TS solutions contain a naked singu
larity outside their event horizons and are therefore not 
black holes. The current popularity of black holes is so 
great that many persons would automatically reject a 
solution on this baSis alone. However, there are per
fectly good reasons for studying solutions that contain 
naked Singularities. One whose conscience is troubled 
by them on astrophysical grounds may regard them as 
primordial remnants of the big bang, or else imagine 
an appropriate interior solution covering the region that 
would otherwise be offensive. At any rate we feel that 
the TS solutions have considerable mathematical and 
physical interest and deserve a great deal of further 
study. 

In this paper we first try to understand the structure 
of the sources necessary to produce the TS field. We 
examine a weak-field limit in which the source has van
ishingly small rest mass but finite size. In terms of 
the TS parameters, this implies the limit must be taken 
as p, q - C<l. The linearized gravitational field obtained 
in this manner is exhibited in terms of a complex New
tonian potential. To understand its nature at large radial 
distances, we analyze the field into multipole moments. 
Near the origin, its singularities determine the source 
in terms of mass and mass-current distributions. The 
Newtonian models we thus obtain for the TS metrics are 
rotating discs qualitatively similar to the model dis
cussed by Israel4 for the Kerr metric but with a smaller 
radius, a/n. We also give a simpler but more abstract 
model, in which the source is represented as a small 
number of point multipoles, all located a complex dis
tance along the axis of symmetry. 

The limit p =0 0, q = 1 is another case of particular 
interest which we examine in detail. We find that this 
limit is not unique and that different metrics result from 
taking it in various ways. The metrics we obtain in this 
manner are new rotating solutions, considerably sim
pler than TS. In this limit we find that the TS parameter 
n need no longer be restricted to integer values. Un-
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fortunately, the new solutions are not asymptotically 
flat. 

II. ERNST POTENTIAL 

The line elements for the TS solutions are quoted in 
the Weyl-Papapetrou canonical form for stationary 
axisymmetric fields: 

ds2 = I(dt - Wdcp)2 _ rl(e2r [dpZ + dzZ] + p2dcp2). (1) 

Here p, cp, z are to be thought of as cylindrical coordi
nates in a flat 3-space, which we call the "Weyl space, " 
and I, w, yare the field variables which depend only on 
p, z. Rather than work directly with these metric com
ponents, we find it convenient to follow other authors 
and focus attention on a quantity called the Ernst 
potential. 5 

The Ernst potential ~ is a complex scalar field. It is 
related to the metric by6 

(
1- ~) 

Re 1 + ~ =1, (2) 

VIm( ~ ~ i )=p-1/2e~xvw, (3) 

where V is the gradient operator on the Weyl space and 
e~ is a unit vector in the cp direction. In this formulation 
the Einstein equations accomplish three things for us: 
(i) They insure that Eq. (3) is integrable for w, (ii) they 
tell us how to construct yonce!, ware given, and (ii) 
they provide an equation which ~ must satisfy 

(4) 

If we write ~ in terms of its real and imaginary parts 

~=o <I> + in, 

then in the weak-field limit we have from Eqs. (2), (4), 

1=1-2<I>, V2<I>=oO, v2n=0. 

Hence the real part <I> of the Ernst potential becomes 
the ordinary Newtonian potential. The imaginary part 
n plays the role of a "magnetic" scalar potential in anal
ogy with electrodynamics. This can be seen from the 
weak-field limit of the geodesic equations, where we 
find that the acceleration of a slowly moving test parti
cle is 

a =0 - V<I> + v x vn. 

Even in the exact theory, the Ernst potential may 

Copyright © 1974 American Institute of Physics 2121 
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FIG. 1. Prolate 
spheroidal 
coordinates. 
The level sur
faces x = const 
are an ortho
gonal family 
of ellipsoids 
and hyperbo
loids. The 
semimajor axis 
of an ellipsoid 
is given by 
mpx/ n, and the 
asymptotic 
angle of in
clination of a 
hyperboloid is 
Ii= cos-1y. 

still be conveniently regarded as a complexified non
linear version of the Newtonian potential. We therefore 
feel it appropriate to concentrate on ~ as the quantity of 
direct physical and mathematical significance. 

III. TS SOLUTIONS 

The TS solutions to Eq. (4) contain arbitrary constant 
parameters m, n,p, q, where m > 0 is the mass, n is a 
positive integer, and p, q are dimensionless numbers 
related by 

pZ+qz= 1. (5) 

For the first two values n = 1, 2 the solutions are1 

~il = px - iqy, (6) 

~-1 = p2(X4 -1) - 2ipqxy(x2 - y2) - q2(1 - y4) (7) 
Z 2px(x2 -1) _ 2iqy(1 _ y2) 

Here x, yare prolate spheroidal coordinates in the Weyl 
space (see Fig. 1) related to p, z by 

p == (mp/n)(x Z _ 1)1 IZ(l_ y2)1 IZ, 

z= (mp/n) xy. 

The cases n = 3, 4 are also given in Ref. 1. The case 

(8) 

n = 1 is equivalent to the Kerr metric as discussed by 
Ernst. 5 For n ~ 5 the TS solutions have not been calcu
lated but are presumed to exist. Since the n = 4 solution 
already fills half a page, there is little incentive to 
pursue the matter further unless a general form for all 
n can be discovered. Charged TS solutions could also 
be written down, but since the procedure for doing this 
is now completely automatic and understood, 7 we feel 
that doing so would be a definite waste of time. 

If we make the natural assumption that p is real, then 
Eq. (5) restricts q to the range Iq I'" 1. As TS them
selves point out, 1 the solutions may easily be extended 
beyond this range via a complex coordinate transforma
tion. We let 

p=-ip, x=ix (9) 

and assume instead that p, x are the quantities which are 
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real. Then we note the following facts: 

(i) Since 1; contains p, x only in quadratic combinations, 
none of its terms lose their reality. Thus the meaning 
of ~* is unaltered, and we still have a solution of Eq. (4). 

(ii) The relation between p, q is 

(10) 

and the restriction on q is now just the opposite of what 
it was before, namely I q I ~ 1. 

(iii) The new coordinates (x, y) are oblate spheroidal 
coordinates in the Weyl space (see Fig. 2) and Eq. (8) 
is replaced by 

p= (mp!n)(r+ l)l/Z(l_ yZ)l/Z, 
(11) 

z = (mp/n) xy. 

Finally we note that, in all of the cases discussed 
above, ~ - 0 as x or x - 00, and hence the solutions are 
all asymptotically flat. 

IV. WEAK FIELD LIMIT 

The exact mass, angular momentum, and quadrupole 
moment for the TS solutions have been given by 
Tomimatsu and Sato1

: 

M-m J-mZq Q-m3 (n
2
_1 pZ+qZ) -, - ,- 3nz . (12) 

In the weak field limit as m - 0 we see that J will be 
only O(mZ), too small to survive, unless q - 00 at the 
same time. We therefore need to use the extended TS 
solutions. We define a Kerr parameter a by the equations 

(13) 

and take the weak-field limit holding a finite. Just as in 
the Kerr metric itself, the parameter a has the dimen
sions of length and serves to describe the linear extent 
of the source. 

Carrying out the stated limit on Eqs. (6), (7), we 
obtain for n = 1, 2, 

1;1= (m/a)X-l, (14) 

1;z= (2m/a)(X-1 +i(xy - i)X-3, (15) 

where 
z 

. 
" >-

, 
" >-

/ 
FIG. 2. Oblate 
spheroidal co
ordinates, Now 
mpxln specifies 
the semiminor 
axis of the 
ellipsoids. 
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FIG. 3. Placement of 
point multipoles along 
the imaginary z-axis 
for the model discussed 
in Sec. IV. 

\ 

" 

X=x- iy. (16) 

Similar ly from the Ernst potential for n = 3 given in TS 
we obtain 

~3 = (3m/a)[X-1 + 2i(xy - i) X- 3 

_ i(3X2y2 _ X2 - 4ixy +.v2 _ 3) X-5]. (17) 

Equations (14), (15), (17) are all complex solutions of 
Laplace's equation, nonsingular everywhere except at 
x = y = O. According to Eq. (11) this is the locus of a 
ring with radius a/n, so that whatever source is produc
ing the field should reside there. 

The results may be written in terms of spherical 
coordinates r, 0 given by 

p=rsinO, z=rcosO 

or alternatively in terms of coordinates r, e defined by 

r= [r2 - 2(ia/n) cosO + (ia/n)2]1/2= (a/n) X, 

rcos O=rcosO - (ia/n) = (a/n)(xy - i). 

(18) 

(19) 

Geometrically, r, (j are also spherical coordinates (see 
Fig. 3), but with their origin located at a point z =ia/n 
on the symmetry axis, i. e., at x = i, y = 1. The multi
pole expansion of ~ about this point, 

~n= ~ enl -:y-(l+1) PI (cose) 

is quite simple, and Eqs. (14), (15), (17) show that it 
contains only terms up to 1 = n. Thus we have a model 
in which the source consists of a finite number of point 
multipoles all placed at the same complex location 
z = ia/n. It seems probable that the same type of model 
exists for higher values of n than n = 3, but we have not 
explored this matter further. 

At large radial distances one would like to have the 
linearized TS fields analyzed into their multipole mo
ments. This is readily accomplished since Eqs. (14), 
(15), (17) can be expanded in spherical harmonies by 
means of a generating function. With the definition 

~n=6 Qnlr-(l+l) PI (cos e) 

we find that 

Q11= m(ia) I, 

Q21= m(l + 1)(ia/2)', 

Q31 = ~m(212 + 41 + 3)(ia/3) I. 

(20) 

These linearized moments are in agreement with the 
first few exact moments quoted in Eq. (12). One of us 
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(W. K.) has also previously calculatedB the exact multi
pole moments for the Kerr metric as far as 1 = 8. This 
was done with the aid of SYMBAL, a formula-manipulat
ing program available for the CDC6600 computer. To 
that point in the calculation, the amazing result was that 
no term oj order m 2 had appeared, and the exact Janis 
moments were still reproducing exactly the linearized 
moments given in Eq. (20)! With the other TS metrics 
this is obviously not the case. 

V. DISC MODELS 

The attractive simplicity of the model discussed above 
is offset by its somewhat symbolic use of complex co
ordinates, and we therefore now consider an alternative 
Newtonian model with real mass and mass-current dis
tributions. We have stated that the Ernst potential is 
singular at x = y = 0 which is a ring of radius a/n. 
Another singularity arises from the spheroidal coordi
nate system itself (see Fig. 2). The coordinate y is dis
continuous across the entire disc x = 0, being positive 
on one face and negative on the other. This leads to a 
corresponding discontinuity in ~, and a consequent 
necessity for sources everywhere on this surface. 

On the disc x= 0, the radial coordinate is 

p = (a/n)(1-l)1 12, 

the element of surface area is 

and the normal derivative is 

a n a 
az = ay ax' 

On any surface x = const *" 0, 

~l = iq( Y + iX)-l, 

~2 = 2iq( Y + iX)-l + 2qx( y + iX)-2 - 2iq(1 + X)2( Y + iX)-3, 

~3 = 3iq( Y + iX)"l + 6qx( y + iX)-2 - 4iq(2 + 3X2)( y + ix)-3 

_ 12q(x+ x3)(y +iX)-4+ 6iq(1 + ;2)2(y +iX)-5, 

where q=m/a. As x-O we have 

~l _iqy;l, 

~2-iq(2y;1- 2y;3), 

~3 - iq(3y+-l_ 8y;3 + 6y;5), 

where 

y;n = lim (y + i€)"n. 
• ~O 

(21) 

(22) 

(23) 

(24) 

(25) 

The functions y+-n must be understood as generalized 
functions, 9 and in that context they have nonvanishing 
imaginary parts. For example, 

y;l = y_l_ i1ro(y). 

All of the other functions may be obtained from this one 
by repeated differentiation. 

In Newtonian gravity the mass density of a sheet is 
given by 

a= - (21T)"ln· V<I> (26) 

and the current density is 
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where n is the unit normal. Using Eqs. (24), we find 
that 

0"1 = (m/21Tcry)(y·2), 

(27) 

0"2 = (m/21Ta2y)(2y·2 - 3y-4) , (28) 

0"3 = (m/21Tcry)(3y-2 - 12y·4 + 10y·6). 

The factor 1/ y in all of these expressions has deliberate
ly been isolated, for it must be eventually combined with 
the factor of y in the area element, Eq. (22). What re
mains in the parentheSiS in O"n is the generalized func
tion. Note that O"n is either positive definite or negative 
definite, depending on whether n is odd or even. Also 
note that as we approach the edge of the disc at y = 0, 
O"n diverges as 

O"n -[(a/n)2 _ p2].(2n+I) 12. (29) 

This would appear to imply that the total mass, 

Mn=tD 21T(a/n)O"nydy, (30) 

would have to be infinite. However, there is a further 
singularity in O"n which is concentrated on the ring y = 0 
and which is due solely to its interpretation as a gen
eralized function. The simple (but rigorous) rule for 
handling a divergent integral like Mn is that the expres
sion is integrated and then evaluated at the end points 
y = ± 1 just as if no singularity at y = 0 were present. For 
all three cases we confirm in this manner that Mn = m. 
Roughly speaking, one may say that there is an infinite 
mass density residing on the ring, of such a sign and 
strength as to make the total mass of ring plus disc 
finite. 

Now for all three values of n Eq. (25) shows that ~n is 
purely imaginary on the disc, and hence the surface is 
an equipotential. One might therefore wonder what re
lationship these solutions have to the familiar electro
static problem of a charged conducting disc, in which 
the surface is also an equipotential. In that problem the 
solution iSlO 

V=(2/1T)Cot·lx=~lnG~D. (31) 

This function is singular at x=±i, which is an entire 
line segment, p = 0, Z = iay, - 1 "f Y "f 1. Moreover, 0", 

now a charge denSity, is once again divergent at the 
disc's edge, 

0"= (cr _ p2).1/2. 

To examine the behavior one would generally expect to 
find there, let r, cP be a local set of cylindrical coordi
nates whose axis coincides with the edge. Laplace's 
equation in this neighborhood will have the solution 

v-I; rmcosm¢. 

Although m would normally be an integer, the presence 
of the disc forces the appropriate choice to be a half
(integer instead. The charged disc picks m = t, while 
for the family of TS solutions we have m = - n + t. (We 
might therefore hope that a TS solution will someday be 
discovered for n = O!) All of these solutions have period 
41T in the angle ¢, and it is therefore a quite natural 
thing to consider extending them to a twofold covering of 
Minkowski space using the ring as a branch line. This 
procedure is thus not a unique feature of the Kerr 
metric. 
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Returning to the mass-current densities, we find that 

jl = - (m/21Ta2y)(1- y2)1/2(y.2), 

j2 = - (4m/21Ta2y)(1- y2)1/2( y.2 _ 3y·4), 

h = - (9m/21Tcry)(1- y2)1 /2(y.2 _ 8y·4 + 10y·6). 

The total angular momentum is 

I n= t n 1T(a/n)3jnY(1-l)1/2 dy, 

(32) 

(33) 

which yields I n = ma for all three values of n. The ve
locity of rotation, even when special relativistic effects 
are included, is just 

vn=jn/O"n. 

From Eqs. (28), (32) we see that the rotation is not 
rigid and that Vn - 1 as the ring is approached. 

VI. THE LIMIT q = 1 

To obtain the static (i. e., nonrotating) limit a = 0 of 
the Kerr metric and the other TS metrics, we simply 
take the expression for the Ernst potential and set p = 1, 
q = O. On the other hand, the so-called" extreme" Kerr 
limit a = m cannot be obtained in so straightforward a 
manner merely by setting p = 0, q = 1. This is to say, 
the metric computed from ~.1 = - iy is not extreme Kerr. 
The reason that this limit needs special treatment may 
be seen in Eq. (8), where we observe that the transfor
mation from (p,z) to (x,y) becomes singular as p-O. 
As a consequence there are various ways in which the 
limiting process might be performed, depending on 
whether p or x is required to remain finite. Possibly 
even some intermediate method might be attempted. 

ConSider, for example, the situation that arises for 
the Kerr metric itself. The relationship between Kerr 
coordinates R, ® and the Weyl-Papapetrou coordinates 
is 

p = (R2 _ 2mR + a2)1/2 sine 

z=(R- m) cos® 

or alternatively 

mpx=R-m 

y = cOS®. 

The Ernst potential is 

~.1 = (R - m) - ia cos® , 
m 

Now, if the limit p - 0 is taken holding either p or R 
finite, we obtain the usual extreme Kerr metric. On 

(34) 

(35) 

(36) 

the other hand, if we allow our coordinates to be re
scaled so that x remains finite and ~.l = - iy, then 
necessarily p - 0 and R - m. One might therefore pre
sume that the metric we obtain in this manner would be 
the Kerr metric restricted to the null surface R = m, 
and hence a metric that lacks the full Lorentz Signature. 
If p were strictly zero this would certainly be the case. 
In fact, the process only confines p to a neighborhood of 
the axis and we find that metric to be 

~.1= _ iy= _ i cos®, 

• 2 
ds2= sm ® (dt- 2rd )2 

1 + cos2 ® cp (37) 
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FIG. 4. Orders of magnitude of terms appearing in the Ernst 
potential for n = 3. The vertical coordinate fJ is used to indi
cate that a term is 0(x6). Bullseyes denote the distinguished 
limits at each odd value of Cl! • 

_ (1 + cos2®)(r-2dr 2 +d®2+ r 2d(l). 

This is a type D metric and therefore a well-known 
one. 11,12 Its role as a limiting metric valid in the immed
iate vicinity of the extreme Kerr throat has been dis
cussed previously by Bardeen. 13 

We next consider the situation that arises in the gen
eral TS metric. As Tomimatsu and Sato themselves 
have pointed out, 1 the limit may be taken holding the 
product px finite. If we then define R, ® coordinates by 

R-m=mpx/n, cos®=y, 

we will always obtain extreme Kerr in the limit, regard
less of uhich value of n we start with. 

Now we will show that there are other nontrivial ways 
of performing the limit that do lead to different solu
tions. Suppose the limit is taken in such a way that p:x!' 
remains finite, where a is an adjustable constant. The 
process is best illustrated using the case n = 3. We write 
down from TS the Ernst potential, keeping only the lead
ing terms in x: 

~;1= w/u, 

w ""p3X 9 _ 3ip2XOy _ 6px5(1_ y4) + i(l- y2)3(y3 + 3y), (38) 

u "" 3p2X8 _ 12ipx5y(1- y2) _ (1- y2)3(3y2 + 1). 

The only powers of p and x that appear are p3X9, p 2X8
, 

p~, and 1. In Fig. 4 we have plotted the order of mag
nitude of each term as a function of a. For almost all 
values of a, one term exceeds all the others in order of 
magnitude, and hence becomes the sole survivor as the 
limit is taken. For certain values, a = 1, 3, 5, the two 
largest terms happen to have the same order of mag-
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nitude, and we then obtain what is known as a "distin
guished limit." 

For q = 1 limits which are not distinguished, the re
sulting Ernst potential must clearly be a function of y 
alone, and turns out to have the form 

(39) 

where k is an integer, k",; n. These solutions are not 
really new, since they can be quite easily obtained from 
the Voorhees metric14 by making the replacement x - y. 
However, they may deserve more attention than has 
been previously been paid to them. The entire metric is 

ds2 =f(dt- 2krd~)2 

_ f"1[sin2k2 ® r-2k2(dr 2 + r2 d(2) + r2 sin2®dcp2], (40) 

where f may be written as 

(41) 

This solution is a type I generalization of Eq. (37) and 
describes a region of the TS metric near its ergosphere. 
Like Eq. (37), this metric is not asymptotically flat. 

The distinguished limits lead to metrics which are 
apparently new ones. For example, for a= 3 we find 

~_1 = _ i ( (1- y4) + 2ipx
3
y ) 

2y(1 _ y2) + 2ipx3 (42) 

and this same solution is obtained for a = 3 from every 
TS metric regardless of which value of n we start with 
(provided only n ~ 2). The coordinates r, () defined by 

(43) 

will be spherical coordinates in the Weyl space, and ~ 

may be conveniently written in terms of them. 

In general, for G' = 2k - 1 we define 

(.!.) Zk-1 _ (k! )2 _1 
m - (2k)! px2k , 

cos(}=y 

and obtain the exact solution 

~-l=W/U, 

w= (r/m)2k-1[(1 + y)k-1_ (1- y)k-l] 

_ i(l- y2)k-1[(1 + y)k + (1- y)k], 

,<-;., 
, " 
:'0 

(44) 

FIG. 5. Singular
ities of the function 
f in the new family 
of solutions, Eq. 
(46). Directional 
singularities oc
cur at the origin 
and along the 
equator of the 
torus, as indicated. 
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u= (1- y2)_.t [(1 + y)k _ (1- y)k] 

+ i(r/m)2I!-l[(1 + y)k-l + (1- y)k-l]. 
(45) 

Furthermore, if Eq. (45) is now regarded Simply as a 
solution in its own right (not derivM from a TS solution), 
there is no reason to restrict k to be an integer, and we 
may allow it to take on any real value. 

The metric has the form of Eq. (1) with 

2( 1 - y:>.)k-l AlB, 

w=rClmA, 
,.:>. :>. exp(2y) =A(l- y2)",.1) {rlm)-2I! 

and 

A= (rlm)4k-2_ {1- yZ)2I!-t, 

B= (rlm)4k-2[(1 + y)2I!-2 + (1- y)2I!-Z] 

(46) 

_ 4(rlm)2I!-l(1_ y2)21!-2 + (1- y2)21!-2[(1 + y)2I! + (1- y)2I!], 

C = 2(k _ 1)(rlm)4k-2 + (rlm)2I!-1[(1 + y)2I!-1 

+ (1- y)2I!_1) _ 2k(l- y2)2I!-1. (47) 

These solutions have not yet been examined in any great 
detail, but we can make a few preliminary remarks 
about their properties. For either r - 0 for r - 00 they 
asymptotically approach one or another of the undistin
guished solutions of Eq. (42). Hence they are not asymp
totically flat. The function f has zeroes on the symmetry 
axis y = ± 1, and on a torus {rlm)2 =: 1- y2 (see Fig. 5) 
and one would expect these to be surfaces of infinite 
redshift. However, the denominator B also vanishes 
at the origin r=O, y=±1, and on the ring r=m, y=O. 
At these points f will possess an angular singularity 
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similar to those which have already been discussed for 
the Weyl and TS metrics. For example, let 

y=E, r=m+1/, 

where E, 1/ are assumed small. Then we find, in a 
neighborhood of the ring, 

1 (E2 + 21/\ 
f"'2k_1 Ez+~l' 

The limiting value of f will be infinite as long as we ap
proach the ring along a straight path, E/1/ =: const, but 
if we approach it along a parabola E2/1/= const, we can 
obtain a limit which is any finite value we please, in
cluding zero. 
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Systems of harmonically coupled identical particles at thermal equilibrium provide dynamical models 
for studies of diffusion due to equilibrium fluctuations. The velocity autocorrelation function and 
mean square displacement of a particle selected from a given system are investigated for various 
models which have the common feature that the particle is directly coupled to L > 1 neighbors, 
reflecting the influence of long range interactions. Theorems are developed which indicate how the 
time course of diffusion is dictated by analytic properties of the vibrational frequency distribution as 
well as by quantum fluctuations whose presence is betrayed by the increasingly important role at 
progressively lower temperatures of Tq = 1i. /Trk T, the quantum transient time. The formalism is 
first applied to a system for which the long range couplings are so parametrized by a range 
parameter z that when z =0 the frequency distribution is identical to that for nearest neighbor 
coupling only (L =1), while as z approaches unity (L~oo) the frequency distribution becomes 
identifiable with that of Ford, Kac, and Mazur which served as the starting point for their 
dynamical theory of Brownian motion. Consequences of this model are: (I) when z <0.5, the 
classical velocity autocorrelation functions exhibit similar qualitative features to those computed for 
molecular diffusion in simple liquids; (2) as z approaches unity, the classical velocity autocorrelation 
function approaches the e -AT Gaussian Markoffian form, and the mean square displacement in the 
same limit is identical to that predicted by the Langevin equation; (3) at low temperatures such that 
AT q > 1, quantum fluctuations tend to dominate thermal fluctuations, resulting in severe departures 
from Gaussian Markoffian behavior. The low temperature effects are analyzed in some detail, and it 
is suggested that the predicted departure of the mean square displacement from its classical behavior 
might be displayed by a particle of macroscopic size suspended in a superfluid. Other models are 
developed which yield mean square displacements which depart even at high temperature from the 
linear dependence upon time characteristic of classical diffusion. The reasons and possible physical 
implications of these behaviors are discussed, together with a brief consideration of Poincare cycles, 
whose neglect is implicit in any dynamical theory of irreversible processes. 

I. INTRODUCTION 

The dynamics of harmonically coupled particles have 
for several yearsl

-
4 provided a useful basis for analyti

cally investigating many-body effects within the frame
work of a solvable physical model. The procedure in
volves two steps. First the motion of each particle is 
found in terms of a linear combination of normal modes 
of vibration. Then assumptions are made about the ini
tial configuration of the system at zero time. If the ini
tial dynamical configuration is defined in terms of a 
statistical (Gaussian) distribution over the normal 
modes, 2,3 or particle displacements and velocities, 4 and 
if the number of particles goes to infinity, then the time 
evolution of a single particle selected from the system 
~xhibits features characteristic of a particle coupled to 

equilibrium fluctuations. The preCise behavior of the 
velOCity autocorrelation function and the nature of the 
consequent diffusive motion, if it occurs at all, are 
dictated by the properties of the normal mode frequency 
distribution. 

a heat bath. Specifically, by choOSing the initial con
ditions on the coordinates and velocities of each normal 
mode to be fixed consistent with thermal equilibrium at 
temperature T, then the system as a whole is simply a 
collection of independent harmonic oscillators at thermo
dynamic equilibrium, and any single particle will show 
the effects of equilibrium fluctuations5 in its behavior. 
The consequences of equilibrium fluctuations upon single 
particle dynamics are most naturally analyzed in terms 
of the single particle velocity autocorrelation function. 6 

This quantity in general assumes some initial value 
fixed by the temperature at time t = 0 and approaches 
zero as t - 00. Derivable from the velocity autocorrela
tion function is the particle mean square displacement 
whose evolution in time reflects particle diffusion due to 
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These investigations, with one important exception, 
assume that the heat bath oscillator assembly is con
structed of particles harmonically coupled to their 
nearest neighbors, as in a one-dimensional solid. How
ever, from a theoretical point of view it is possible to 
construct one-dimensional systems in which a given 
particle is harmonically coupled not only to its nearest 
neighbors, but to any other neighbors as well. In such 
a case the vibrational frequency distribution becomes 
parametrically a function of a force constant distribution 
which reflects long range interactions between "active 
neighbors"? far from a given particle. Such frequency 
distributions were discussed briefly many years ago by 
Brillouin, 8 and a particular force constant distribution 
is impliCit in the previously mentioned exception, the 
investigations of Ford, Kac, and Mazur. 2 These authors 
showed that for a particular choice of frequency distri
bution they could derive a statistical mechanical theory 
of Brownian motion. This work has recently been ex
tended by Zwanzig9 to derive generalized Langevin 
equations for nonlinear systems interacting with suitably 
constructed heat baths. 

The purpose of the present work is to examine the ef
fects of long range couplings upon the diffusive behavior 
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of a single particle embedded in a one-dimensional har
monic oscillator assembly of identical particles. Inter
est will be confined to the single particle velocity auto
correlation function and the consequent mean square 
displacement. In Sec. II the assumptions underlying the 
systems to be treated are stated together with the solu
tions of the normal mode problem. In Sec. ITI expres
sions are derived for the velocity autocorrelation func
tion and mean square displacement within the frame
work of quantum statistical mechanics. Certain state
ments can be made concerning the latter which depend 
on general analytic properties of the frequency distri
bution function p(w) defined in Sec. II. It is shown that 
if p(w) is a slowly varying function of w then in the high 
temperature limit that T - 00, the mean square dis
placement behaves quite generally as 2Dt, the result of 
classical self-diffusion. The diffusion coefficient D is 
determined by p(w) evaluated at zero frequency. This 
time dependence is true asymptotically, however, and 
holds only for times such that wot» 1, where Wo defines 
the cutoff of the frequency distribution. The nearest 
neighbor lattice and the model of Ford et al. 2 are special 
cases of this general result. It is possible to connect 
smoothly the nearest neighbor model with that which in
cludes long range couplings implied by Ford et al. 
through introduction of a geometric progression of inter
action constants. This program is carried out in Sec. 
IV. The infinite cutoff frequency which these authors 
postulated is replaced by a finite cutoff frequency direct
ly reflecting long range interactions. Its presence pro
duces velocity autocorrelation functions which behave 
qualitatively as those computed for center of mass 
molecular motion in simple liquids. 10 The model in 
general permits the tracing of the progressive role of 
long range couplings as time goes on to produce the dif
fusive behavior characteristic of Brownian motion. 

When the above two conditions, T - 00 and p(w) slowly 
varying, are relaxed new features appear 0 The behavior 
of these model systems for arbitrary temperatures in
troduces another physical parameter, the quantum 
transient time n/kT which has been considered by 
Ullersma3 and earlier by MacDonald. 11 In the classical 
limit it is of course zero and hence does not appear. At 
low temperatures, on the contrary, it assumes pro
gressively more importance. The general considerations 
of Sec. III show that at absolute zero such that n/kT - 00, 

if p(w) is slowly varying the linear time dependence of 
the mean square displacement in the classical limit is 
replaced in the quantum limit by a logarithmiC depen
dence on time for wot» 1. The cause of this "zero point 
drift" is associated with the zero point vibrations of the 
normal modes. However, as soon as there is a departure 
from zero temperature, albeit small, there is a com
petitive asymptotic contribution which adds to the zero 
point term. It is of the same form as the corresponding 
classical form, proportional to T and linearly propor
tional to time. The latter thus tends to swamp out the 
logarithmic contribution. On the other hand, the classi
cal Langevin theory of Brownian motion12 predicts a 
mean square displacement which is the sum of two 
terms, a term linear in time and a decaying term which 
behaves as exp( - :\.t), where:\. -1 is a characteristic re
laxation time. The effect of a non-zero quantum tran-
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sient time is to severely modify this second term. Ac
cordingly, section V will conSist of an analysis of the 
competitive effects of the quantum transient time upon 
Brownian motion within the framework of the geometric 
progression model. As T - 00, of course, the classical 
result is obtained, while at T = 0 the mean square dis
placement is of an elaborate functional form, reducing 
to log:\.t as :\.t - 00. 

When the second condition is relaxed more exotic dif
fusive behavior appears, If p(O) is infinite the mean 
square displa'cement is asymptotically proportional to 
t"'(a> 1) in the classical limit and t",·1 in the quantum 
limit. The value of a is determined by the nature of the 
Singularity of p(w) as w - O. If, on the other hand p(O) 
vanishes, then a < 1, so that diffusive behavior can 
appear in the classical limit but not in the quantum limit. 
In the latter case the particle never escapes from an 
equilibrium position. Diffusion in the context of the 
present scheme, then, becomes classifiable in terms 
of the nature of the singular or vanishing behavior of 
p(O). Examples of both cases in the classical and 
quantum limits are investigated for particular force 
constant distributions in Sec. VI. 

The choices of force constant distributions are not 
intended to be exhaustive, but are selected to illustrate 
one or more aspects of the quantum statistical mechanics 
of irreversibility. Section VII will briefly consider the 
general problem of Poincar~ cycles and irreversibility 
within the context of harmonic models, and concludes 
this work with a general assessment of their applicability 
to physical systems. 

II. THE MODEL 

Consider 2N + 1 identical particles each of mass M 
arranged to form a linear one-dimensional lattice with 
free ends. It is assumed there exists a stable con
figuration such that if all the particles were at rest, 
adjacent particles would be a lattice distance d apart: 
particle n is at nd measured to the right of the origin 
along the X axis. The position of the nth particle at 
time t is X,(t) = x,(t) + nd, so that x,(t) represents the 
displacement of the nth particle with respect to its rest 
position. Maximally there can be 2N interactions be
tween nearest neighbors, 2N-1 between next nearest 
neighbors ... (2N + 1) - m between particles md apart ... 
one interaction between end particles, for a total of 
N(2N + 1) possible interparticle interactions. For small 
displacements around the rest pOSitions the potential 
energy in the harmonic approximation is 

( 1) 

L == 1 corresponds to nearest neighbor coupling only 
(2N couplings) while if L == 2N the interactions are maxi
mal [N(2N + 1) couplings]. Each force constant gm is 
physically a measure of direct coupling of particle n 
with the particle a lattice distance md from it. As an 
example, a lattice of seven particles is illustrated in 
Fig. 1. The inner sum in the potential energy is con
strained for each n depending upon m because the parti-
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FIG. 1. Long range harmonic couplings in a linear lattice of 
seven partic les. 

cles are in different dynamical environments in pairs, 
with an exceptional central particle. The central parti
cle n == N + 1 is in a symmetric environment in which 
the force to its right is balanced by an identical one to 
its left: it can experience at most N interactions 
gl' g2'" g N' Particles nand (2N + 2) - n are identical in 
pairs and can experience at most (2N + 1) - n interactions 
gl' g2'" g2N+l-n' 

For L == 1 the solutions to the equations of motion 
whichEq. (1) leads to for free ends (XO==Xl' X2N1 =X ) 

13 + 2 N+2 
are well known. When long range couplings are in-
cluded, however, (L > 1) the boundary conditions be
come very complex and the dynamical problem admits 
of no simple analytical solutions, a point made already 
by Brillouin. 8 Physically these complications represent 
extended boundary effects which can be formally eli
minated by the requirement that the system be transla
tionally invariant. This condition implies that while 
g1' .• g N can be formally independent quantities, the 
remaining constants gN+1'" g2N are related to them by 
g2N=gv g2N-l =g2'" g N+1 =gN or in ,!!:eneral 

g2N-m=gm+V m=O,l .. ·N-l. 

For seven particles, g6=g1' g5=g2' g4=g and the 
t
. 3 

par lcles can now be visualized as distributed on the 

(2) 

circumference of a ring with the interactions represented 
by cords connecting the particles. This is shown in 
Fig. 2. In the general case, traversing the ring in, say, 
a clockwise direction returns one to a given particle 
after counting 2N + 1 particles. Thus x =X Whl·ch l·S 

" n+2 N+l 
the usual statement of cyclic boundary conditions. 13 

Analytically, from Eqs. (1) and (2) 

2N-1 

+ g2 n~1 (X",.2 - xn)2 + (g2N-I =g2) [(X2N - XI )2 

+ (X2N+I - X2)2] 

2N-m 

+gm+1 n~l (x n+m+1 -xn)2+(g2N_m=gm+1) 
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m +1 

X L: (X n+2N-m - Xn)2 
n:: 1 

(X n+N+1 - Xn)~} 

2N+l 

+g26 (Xn+2-Xn)2(X1=X2N+2' X2 =X2N+3) 
n = 1 

2N+l 

(3) 

+gm+16 (Xn+m+1-X n? (X1=X2N+2,X2=X2N+3"'Xm+1 
n.1 

2N+l 

+gN 6 (xn+N-xnf (X1=X2N+2,X2=X2N+3'" Xn 
n=1 

=Xn+2N+1 )}' 

so that 

(4) 

Comparison of Eq. (4) with Eq. (1) shows that the im
position of the conditions of Eq. (2) on the force con
stants, plus cyclic boundary conditions, removes the 
dependence of the inner sum upon the range of coupling. 
Translational invariance restricts the maximum allowed 
coupling to L =N and all particles behave identically, 
roughly as the "central particle. " For nearest neighbor 
coupling only (L = 1) just the condition Xl == X 2 N+2 is 
necessary while the general condition xn==xn+2N+I is 
redundant. When maximum coupling is allowed Eq. (3) 
indicates the more general condition is necessary. 

\ 
\9 2 
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FIG. 2. Long range harmonic couplings in a cyclic lattice of 
seven particles. 
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The Hamiltonian implied by Eq. (4) 

(5) 

leads to the equations of motion 

L 

Mx,,+ '6 gm[2x"-x"+m-x"_m]=O; X"=Xn+2N+l' (6) 
m = 1 

The solutions to Eq. (6) are given by the same linear 
combination of normal modes QJ which are appropriate 
to L = 1 for cyclic boundary conditions. Specifically, the 
solutions are effected to the following real trans
formation: 

1 +N (: 27Tnj 27Tnj ) 
x"(t)= [M(2N + 1)]1/2 j"f

N 
\sm 2N+ 1 + cos 2N + 1 Qlt) 

(7) 

so that the Hamiltonian is now in diagonal form 

(8) 

where the frequencies of the normal modes of vibration 
are2

•
8 

2 2 L"N ( 27Tmj ). 
w j = M m21l gm I-cos 2N+l ,}=O,±I .. ·±N. (9) 

The frequencies are doubly degenerate, W j = w_ j except 
when j = 0 for which Wo = 0 corresponds to uniform trans
lation of all the particles. This result generalizes the 
nearest neighbor case, where the frequencies now in
volve a sum over L terms for each j * O. 

The frequencies of Eq. (9) have an interesting mathe
matical property which has been stressed by Brillouin8

: 

since w~ can be expressed as a polynomial of degree L, 
w~ is a single-valued function of j, but j is not neces
sarilya single valued function of Wj' However, it is im
portant to note that it can be provided N - "". Further
more, in the limit that N - "" the frequencies lie con
tinuously in the interval 0 ,,; W ,,; wo' where Wo is the cut
off frequency 

4 L 
w~=- '6 gm' 

M m=l 
(m odd) 

(10) 

Now L can be infinite as well as finite (L - N - ""). Since 
it will prove possible to choose force constant distribu
tions such that j is in fact a single-valued function of w, 
whether L is finite or infinite, it is a simple matter in 
these cases to find j(w) by inversion. The first deriva
tive of j(w) then defines the following frequency distri
bution: 

2 dj 

{

-- -, O";W";wo} 
p(w)= 2N + 1 dw 

o ,w> Wo 

l
WO 

p(w)dw=1. 
o 

(11) 

p(W) represents the well-known density of frequencies, 
or number of frequencies per unit frequency interval 
divided by the total number of frequencies, 14 with Wo 

functioning as the cutoff of the frequency spectrum. 
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Quantities which involve sums over j will now become 
integrals over w. That is 

1 +N iWo 
2N+ Il;;N F(j) ~~ 0 F(w)p(w)dw. (12) 

The choices of force constants, which completes the 
dynamical problem, will be dictated by two criteria. The 
first is the mathematical requirement that w~ > 0 for 
j > 0 so that all frequencies are real. The second is the 
physical requirement that the interparticle forces de
crease with distance between particle pairs 

III. VELOCITY AUTOCORRELATION FUNCTION 
AND MEAN SQUARE DISPLACEMENT 

(13) 

Thus far, the description of the harmonic lattice is 
deterministic and completely within the framework of 
classical mechanics. Statistical mechanics enters the 
picture by postulating a priori that the initial conditions 
on the coordinates and velocities of the normal modes be 
fixed consistent with thermal equilibrium. This implies 
that at f = 0 these modes, regarded as a collection of 
independent oscillators, have equilibrium dispersions 
derivable from the following density! matrix W in the 
position representationl5

•
16 

W = 9 Wj(Qj(O), Qj(O); ej = :~j] (14) 

Wj=[~~ tanh ~jJ/2 exp- :~{tanh i[Q/O)+Qj(O)]2 

+ coth i [Qj(O) - Qj(O)]2}. 

The moments at equilibrium are found by integrating 
products of the operators 

(op) (op) 

Q/O), P/O) = - ili[d/dQj(O)] 

over this distribution 

where the angular brackets signify the dispersions are 
at thermal equilibrium. 17 The single particle velocity 
autocorrelation function (V(t1) V(t2) T for the nth particle 
is found by differentiating Eq. (7), forming the sym
metrized product of v"(f 1) =X"(tl) and v "(t2) = x"(f2) at 
two times f l , f2 and statistically averaging over the 
zero time quantities according to Eq. (15). The cross 
terms in the double sum vanish because of the Kronecker 
6 jk factors in the dispersions, leaving a single sum. 
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(16) 

[T= Itl -t2 1]. 
In the limit that N - QO, according to the prescription of 
Eq. (12), one obtains 

(V(tl) v(t2» T == (v(O) v( T» T' 

n [0 (nw) == 2M 0 W coth 2kT . p(w) COSW(tl - t2)dw, 

(17) 

n l w
o wp(w) n [0 

= M 0 exp(nw!kT)-1 coswTdw+ 2M 0 

x wp(w)coswTdw. 

The velocity autocorrelation function has been defined 
using the symmetrized product because quantum opera
tors at two different times do not commute. 15 It is in
dependent of n as it must be due to dynamical equiva
lence of the particles. In general, a consequence of 
translational invariance is that any two-particle cor
relation function linking particles m and n must be a 
function of 1m - n I; the present result is a special case 
of this fact. 2 The dependence of the velocity autocor
relation function on the time difference T = I tl - t21 re
flects time invariance, so that any property of the 
system must be independent of time, the characteristic 
stationary property of thermal equilibrium. In the 
present case 

(V
2(t»T=(V2).q=.::.r fWO 

w COth(:T) p(w)dw. (18) 
o 

This quantity is the equilibrium mean square velocity 
per particle. 

Associated with stationary quantities are equilibrium 
fluctuations5 in their values which are functions of time. 
The fluctuations in the position of any particle are mea
sured by the change in its position in a time interval t, 
averaged over the equilibrium distribution. Thus, 

o(t) =Xn(t) - Xn(O) == xn(t) - xn(O) = f vn (fl)dtl (19) 

a 2(t) == [xn(l) - xn(0)]2 == lot lot vn (tl)V n(t2) dtl dt2• 

Taking the thermal average < cr It» T = 0 from the first 
line of Eq. (15), the mean square displacement <cr 2(t»T 
is given from Eq. (17) by 

(20) 

n [WO {[ 1 - coswt] r ( nw) ] t = Mow Lcoth 2kT p(w) ~dw, 

= ~ fWO 
{ [1- :oswtJ [eXP(iuj;T) _ 1J }dW 

+ ; ;:wo [1-~oswt] p(w)dw. 

Comparison of Eq. (17) with Eq. (20) shows that the 
velocity autocorrelation function is related to the mean 
square displacement it produces by 
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(V(O) V(T»T= i [; (a
2(t»J t=~' (21) 

One could follow a similar procedure to investigate ve
locity fluctuations in terms of a double time integral 
over the autocorrelation function for the force found 
from the second derivative of position coordinate. Ve
locity fluctuations tend to regress to zero with a time 
dependence dictated by the velocity autocorrelation func
tion. The fluctuations in position will not usually in the 
present scheme go to zero, although they might. Whether 
they do or do not depends upon the functional properties 
of p(w). If the position fluctuations go to zero in time, 
then each particle will have a position equilibrium mean 
square value (x2)eq as does always the velocity [Eq. (18)]. 
If the fluctuations do not regress, their persistence 
results in a mean square displacement which increases 
in time, the familiar phenomenon of diffusion. These 
points will be discussed in more detail in Sec. VI. 

It is to be observed that both the velocity autocor
relation function and the mean square displacement 
include terms independent of temperature. They appear 
because of the temperature independent ~ factors in the 
equilibrium dispersion of Eq. (15). If one subtracts off 
the zero point contributions, the quantities 

(22) 

(23) 

would not appear. This was done by Ford et al. ,2 by 
defining the equilibrium dispersion in terms of the 
ordered product formalism18 which removes the ~ fac
tors. The opinion here is that on physical grounds the 
zero point contributions should be retained. The reason 
is that at absolute zero the Uncertainty Princi!)le de
mands motion of the particles due to zero point vibra
tions associated with the normal modes. Thus, any 
given particle suffers "collisions" the net effect being at 
T = 0 a zero point drift, caused essentially by zero point 
velocity correlations. The dependence of the zero point 
drift upon time will be discussed below. Because of this 
contribution, it is necessary to make a distinction be
tween the classical values of these quantities for which 
n = 0 and the high temperature limit as T - 00. Denoting 
classical quantity by the subscript (c) then, when n=O, 
from Eqs. (17) and (20) 

kT fWO 
(v(O) V(T»c= it [p(w) coswT]dw 

o 
(24) 

<cr2(t»c= 2!T 1w

O [l-;zoswt) p{w) dw. (25) 

The differences between the high temperature limit and 
the classical expressions of Eqs. (24) and (25) are the 
corresponding zero temperature contributions of Eqs. 
(22) and (23). 

The detailed analysis of the diffusive processes re
quires speCification of pew). However, some general 
statements can be made as to the behavior of (a 2

1 t) T 

for times small such that wot« 1, and times large such 
that wot» 1. For short times the cosine term in Eq. 
(20) can be expanded, yielding a first nonvanishing con-
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tribution which goes as f. With the use of Eq. (18) 

(a 2(t)T==(v2).qf, wot«l, (26) 

For times short compared to the inverse of the cutoff 
frequency, the mean square displacement is like that of 
a free particle and characterized by the equilibrium 
mean square velocity. During this period the particle 
has yet to suffer a collision: w;} serves as a measure of 
the "microscopic interaction time" for times less than 
which, roughly, there is no interaction so that the 
particle moves undisturbed. This parallels the short 
time behavior of a particle executing Brownian motion 
and is a well known consequence of the solutions to the 
free particle Langevin equation. 12 The identification is 
not exact because the criterion for small times in the 
Langevin theory is xt « 1, where X is a characteristic 
macroscopic relaxation time parameter. The relation
ships between the microscopic interaction time and the 
macroscopic relaxation time will be of paramount im
portance in the classical discussion of Brownian motion 
in the next section. A second difference is that (v2 ).q 
is here defined for arbitrary temperature. Specifically 

(27) 

wp(w)dw. 

The kinetic energy per particle is similar to that of a 
free particle in the classical limit, and at T ==0 similar 
to that of a quantized oscillator of frequency w in the 
ground state, where w is the first moment of the fre
quency distribution. Thus 

( 2) T... kT + liw . 
v eq - M 2M (28) 

These results can be put into perspective by "turning 
off" the harmonic couplings between the particles. The 
free particle frequency distribution is given by p(w) 
==o(w). As a consequence the velocity autocorrelation 
function is kT/M and (a2It)T is (kT/M)f for all times 
and independent of quantum effects (n). Conversely, the 
very existence of particle interactions in the present 
scheme necessarily brings in quantum effects. 

Some relationships between quantum effects and 
particle interactions can be seen in a more transparent 
light by consideration of the mean square displacement 
in the asymptotic limit that wot - 00. If p( w) is a slowly 
varying function, then from Eqs. (25) and (23) after a 
change of integration variable 

_ 2kT p(O)t (Lim fwot 1 - cosx dX), (29) 
M wot--~ 0 r 
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For wot large, the first integral is (1f /2) + O( WOt)-1, while 
the second integral is logwot + y - Ci(wot), where y is 
Euler's constant and Ci( wot) is the cosine integral which 
also decays as (wot)-I. 19 Thus, retaining only the terms 
which grow in time 

(O' 2 (t) c - 2Dt 

(O' 2(t)0 - 2DT q logwot, 

where 

D==(1fkT/2M)p(O); T q=Ii/1fkT. 

(30) 

(31) 

In the classical limit, then, if p(w) is slowly varying, 
the mean square displacement is proportional to time 
in the asymptotic limit that wot - 00, and characterized 
by a diffusion coefficient which is essentially given by 
the density of frequencies, evaluated at zero frequency. 
This of course is just the dependence predicted by the 
classical theory of diffusion. On the other hand, at ab
solute zero, D = 0 but the mean square displacement in
creases as log(wot) parameterized by a "diffusion coef
ficient" (of different dimensions) Dq=DTq=(1i/2M)p(0). 
In this approximation the zero point drift is param
eterized simply by the product of the classical diffusion 
coefficient and a quantity Tq which, following Ullersma, 
will be referred to as the quantum transient time. 3.20 

This derivation as it stands, however, is apt to be mis
leading: it would seem to imply that for high tempera
tures and long times the mean square displacement 
evolves as the sum of the two terms of Eq. (30). But 
this is not true. What is true is that as long as T '" 0 the 
mean square displacement eventually goes as 2Dt and 
the logarithmic term is cancelled out as wot- 00. At 
T = 0 this cancellation cannot occur and the logarithmic 
drift persists. To see this it is necessary to return to 
the complete expression of Eq. (20). Let x = WT' in the 
first term, where l' is some parameter. Then 

(a2(t) = 2IifW
O

T' {[ 1- COS(t/T')X ] rp(X/T') ]}dX 
T M 0 exp(lix/kT1')-l l x 

(32) 

In the same approximation as the preceding, p( w) is 
evaluated at w = 0 and the integration limit is extended 
to infinity. The resultant integral yields21 

It is to be observed that this expression is independent 
of T'. If T' = Tq then its validity is restricted by the con
dition liwo» kT; if T' = t its validity is restricted by the 
condition wot» 1. Thus, Eq. (33) holds for all times and 
asymptotically low temperatures or all temperatures 
and asymptotically long times. At T==O, of course, Tq 
is infinite and the first term is zero for all times. This 
expression is not valid at all in the free particle case 
discussed above since this implies that wo=O [Eq. (10)] 
so that neither asymptotic condition can be satisfied. 
For t« T q the log term can be expanded for small values 
of tlTq. The first nonvanishing term goes as t2

• Com
bining this with Eq. (27) for the zero temperature con
tribution leads to the result 
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( 
2 ) _ [.!. (7TkT)2 (0) nw ] t2 

a ItT - 6 Mn p + 2M ' waf « I «wa T q' (34) 

For low temperatures the first temperature contribution 
to the equilibrium mean square velocity is proportional 
to T2. In the opposite extreme that t» T., ignoring terms 
of the order of exp - (t/T .), 

(a 2 (t) T= 2Dt + 2DT. [lOg(Wfqj -lOg(Wat~ (35) 

+ [(a 2(t)a- 2DTqlog(wot)] 

I « Wo T q « wat. 

Neglecting the constant term, the zero temperature 
logarithmic time dependence vanishes in this approxi
mation, leaving only the classical contribution for ar
bitrarily low but finite temperature. This assumes, 
however, that t» n/kT (independent of wa) and hence 
this asymptotic result takes longer to achieve as T - 0; 
it is never reached at T = O. 

The preceding can be summarized by saying that for 
any nonzero temperature the mean square displacement 
will after a sufficiently long time approach the classical 
linear dependence upon time. The rate of approach is 
dictated by the quantum transient time: the classical 
form is reached when t» T. for any finite value of Wo T q 

provided wot is sufficiently large, and hence takes longer 
to achieve at progressively lower temperatures. Finally, 
at absolute zero the linear time dependence gives way 
to a logarithmic behavior. It is to be reemphasized, 
however, that these results are valid only provided p(w) 
is sufficiently slowly varying that it can be approximated 
by its value at zero frequency over the entire tempera
ture range. Even if p(O) is finite, it is possible for this 
approximation to be valid in the classical limit but not 
in the quantum limit. It is just this circumstance which 
will characterize the quantum modifications of the 
classical theory of Brownian motion of Sec. V within the 
framework of the model to be developed in the next 
section. 

IV. GEOMETRIC PROGRESSION OF LONG RANGE 
INTERACTIONS AND THE CLASSICAL THEORY OF 
BROWNIAN MOTION 

We will consider here the classical velocity autocor
relation function and mean square displacement for a 
force constant model in which the interaction constants 
are related to each other as terms in a geometric pro
gression with alternating sign: g1 =g, g2 = - zg, g3 
= Z2g "', and in general 

Substitution into Eq. (9) gives, after trigonometrical 
summation21 

(36) 

W2=2g[I-Z] [ l-cos[27Tj/(2N+I)] 1 
J M l+z 1+2zcos[27Tj/(2N+l)]+z2] (37) 

which, by inversion, yields the following frequency 
distribution: 
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(38) 

This frequency distribution can be thought of as charac
terized by two parameters: the cutoff frequency Wo 

given by Eq. (10) with L = 00, and a second parameter \ 
related by Wo through z. They are given by 

[ 
4g )1/2 I-z [g l-zr/2 

wo= M(I_Z2) ; \= 21Z wo= Mz l+zJ . (39) 

These quantities act reciprocally as functions of z. At 
z=O, wo=(4g/M)1/2 and \ is infinite; as z approaches 
one, Wo approaches infinity while \ approaches zero. In 
parallel to the mathematical behavior, Eq. (36) indicates 
that the physical effect of progressively increasing z 
is to progressively increase the importance of long 
range interactions. By regarding z as the dependent 
variable, it follows from Eq. (39) that 

W2 
-=:JL Wo «\ 4\2 , 

(W~+\2)1/2_\ 

z= (w~+\2)172+\ ·172, wo=\ 

1- 2\, wo» \ 
Wo 

(40) 

Introducing the following polar coordinates, Wo = r sin</> 
and \ = r cos</>, then 

(41) 

Increasing the strength of the long range couplings from 
z = 0 towards z = I can be thought of as a rotation in an 
interaction space from </> = 0 towards </> = 7T /2. z cannot 
equal one, since this would imply that all interactions 
are of the same magnitude in violation of the physical 
requirement of Eq. (13), as well as invalidating the 
summation leading to Eq. (37). Nevertheless, 
asymptotically 

(w)z=o 2 
p - 7T(W~- W2)1!2 (42) 

~1 7T(/~ w2 )' (~o-=-;). 
The frequency distribution for z = 0 corresponds to the 
usual case of nearest neighbor coupling only, while as 
z approaches unity p(w) corresponds to the frequency 
distribution of Ford e tal. which served as the starting 
point for their dynamical theory of Brownian motion. 
However, there is a difference in principle between their 
procedure and the one adopted here. They considered \ 
and Wo as independent quantities, and by choosing the 
latter to be infinite immediately obtained the classical 
velocity autocorrelation function as the complete Fourier 
transform of p(w) to produce the time dependence 
exp( - \ T) characteristic of Brownian motion. In the 
present scheme :\. and Wo are so related [Eq. (39)] that the 
former approaches zero at the same rate that the latter 
tends to infinity. Thus it is necessary to investigate the 
implications and range of validity of their approximation 
of infinite cutoff frequency. 
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As a first step in tracing the dynamical role of long 
range interactions embodied by the model of Eq. (36), 
we will first show that the classical velocity autocor
relation function can be expressed as an infinite series 
of Bessel functions of even order J 2n• From the first 
equality of Eq. (38), the frequency distribution can be 
expanded in Cheby she v polynomials T 2n' Setting 
X= W/W0

22 

so that from Eq. (24) 

(v(O) v( T) c 

_ kT {.!. £+1 cOS(XWoT) 2" 
- M 7T (1_~)1/2 dx+ - '0 (_z)n 

-1 7T n=1 

( 43) 

where the second equality follows from the fact that the 
integrals over T 2" are 7T( - 1)" J 2"( Wo T). 21 For Wo T « 1, J 2n 
can be expanded in powers of Wo T followed by summation 
over n. Through (WoT)4 only J o' J 2, and J 4 contribute, 
giving the result 

(v(O) v( T) c 

=: {1- [1 ~zJ 
(45) 

(WoT)2 +[ (1 - ~~~3 - z)] (WoT)4 _ .. } 

This illustrates that as Wo T increases higher order 
Bessel functions contribute progressively greater con
tributions to the velocity autocorrelation function, im
plying the role of progressively higher powers of z: the 
longer range couplings become more important as Wo T 
gets large. Oppositely, when z = 0 and there are no long 
range couplings, Eq. (44) degenerates into the well 
known expression for nearest neighbor coupling as a 
zeroth order Bessel function. 3.4 

Of greater importance is the velocity autocorrelation 
function for values of T large compared to the micro
scopic interaction time, Wo -1. This asymptotic behavior 
is obscured in Eq. (44) by the fact that as long as WoT 
is finite there is no single large argument approximation 
to J 2n which is valid for all n. It is necessary, therefore, 
to consider the third equality of Eq. (38) for p(w). In
sertion into Eq. (24) gives 

(v(O) v( T) c 
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For Wo T large the Bessel function assumes its asymp
totic form, retaining only the first term which behaves 
as (wo T)-1/2. Since the integral will appear repeatedly in 
subsequent calculations it is considered separately in 
Appendix A, denoted there by J(c)o The asymptotic value 
for J(c) is given by Eq. (A4). Setting c = A, t = T in that 
expression and ignoring the oscillatory term, then 

(v(O) v( T) c 

= ~ {exp(-AT)+ G:~] (7T~oS/2 COS(woT- i)} 

[ 
1-z 1 

A= 2u w~ 

with the use of Eq. (39). The next term behaves as 
(WoT)-3/2 which, if included, would be the sum of the 

(47) 

next correction to Jo and the neglected oscillatory term 
of Eq. (A4). For z = 0, A is infinite and Eq. (47) reduces 
to the asymptotic result for the nearest neighbor cou
pling. In the present model the necessary and sufficient 
condition for the existence of the exponential term is 
the presence of long range interactions. 

Brownian motion is characterized as a Gaussian 
Markoffian process, implying that for all T the velocity 
autocorrelation function be of an exponential form. If 
one formally sets Wo infinite and keeps A finite this is 
achieved in Eq. (47). This was the assumption of Ford 
et al., although recognized by them as being an approxi
mation. The second term of Eq. (47) represents the 
first correction to that approximation, that is, the first 
departure from Gaussian Markoffian behavior. The 
question is, how valid is the approximation in which, 
rather than setting Wo equal to infinity, one instead 
merely neglects the second term? The answer is deter
mined by time scale. Consider first values of T for 
which 0"" WoT "" 10. The velocity autocorrelation function 
must be determined from the exact expression of Eq. 
(44), and illustrated in Fig. 3 for representative values 
of z. Non-Markoffian oscillatory behavior is very 
manifest for small values of z while for values close to 
unity the curves are starting a predominently exponen
tial decay, although the time scale does not yet betray 
their over-all behavior. It is of interest to compare 
these results with computer computations of velocity 
autocorrelation function for liquids. 10 As here the curves 
show a nonexponential dependence upon T. There is 
typically an interval for which the velocity autocorrela
tion function is negative, and it is just this feature ex
hibited by the curves for small z of Fig. 3. For Wo of 
the order 1013 sec-1 the curves for z = 0.2, 0.4 reproduce 
qualitatively the computer experiment curves. Berne 
has argued10 that the negative regions indicate a parti
cle's displacement towards its neighbors followed by a 
return back to its original position. For low values of 
z this occurs in the short time region but not yet for 
high values. Generally, the period for which the curve 
is negative is roughly a measure of the duration during 
which the particle retains memory of its interaction. In 
terms of the present scheme, the curves go negative 
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because of a finite microscopic interaction time Wo -1. It 
is to be emphasized that the present results show only 
a qualitative similarity with the much more refined 
computer experiments. In some latter cases the curves 
may go negative twice, but having gone negative never 
go positive. In other cases, the curves go negative once 
and thereafter remain positive. The present curves go 
both positive and negative more than once, but with 
diminishing amplitude as T goes on. On the other hand, 
these results represent only a one parameter fit: Wo 

fixes the time scale with z (or x) adjusted. This sug
gests a formal Bessel function expansion with more 
adjustable parameters may provide a useful device 

to 

0.8 

!\ 
E 0.6 
> 
0 

~ 
::II: 

0.4 

FIG. 3. Normalized classical veloc
ity autocorrelation functions pre
dicted by Eq. (44) for small times 
WOT'" 10. Curves are labelled by the 
corresponding value of z. 

for computer simulation of liquid velocity autocorrela
tion functions. Continuing on, the next time scale for 
10"" WoT "" 100 is shown in Fig. 4. For z less than O. 8 
the velocity autocorrelation functions have essentially 
decayed, while for z;;. O. 8 the oscillations tend to be 
cancelled by destructive interference of many apprecia
ble Bessel function contributions. The lowest z = 0.6 
"survivor" still shows many oscillations but with suc
cessively diminishing amplitude characteristic of Bessel 
function behavior. This is considerably less so for 
z = O. 8 and above, where the exponential behavior is 
very apparent. Figure 3 depicts behavior for micro
scopic T of the order of WO-1; Fig. 4 is an intermediate 

FIG. 4. Normalized classical 
velocity autocorrelation func
tions predicted by Eq. (47) for 
intermediate times 
10<woT<100 (see text). 

-ruL-----------~20~-----------4~0~-----------6~0------------~80------------~100 
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region where Wo T is large enough for the veloCity auto
correlation function to exhibit Gaussian Markoffian be
havior, but small enough to also exhibit residual os
cillatory evolution, or memory. It should be added that 
for WoT= 10 the exact expression of Eq. (44) with 10 
Bessel function terms (through J 20 ) gave results es
sentially identical with the approximate asymptotic for
mula of Eq. (47). The latter, then, was used to com
pute the curves of Figs. 4-6. Figures 5 and 6 show re
sults for the time scales 102 

., Wo T ., 103
, 103

., Wo T ., 104
, 

respectively. We are clearly here in macroscopic time 
regions for which no oscillations are sensibly detected. 
The behavior appears Gaussian Markoffian, and only 
velocity correlations reflecting long range interactions 
are significant. In principle there are still oscillations, 
but on the macroscopic time scale they are too small 

10 

02 

2000 4.000 6000 
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FIG. 5. Normalized classical 
velocity autocorrelation func
tions from Eq. (47) for long 
times 102 < "bT < 103• 

to be "observed"; indeed their absence defines the time 
scale as macroscopic. In summary, the effect of long 
range interactions is to push the non-Markoffian os
cillations to large time scales. Consequently, their 
contribution to the velocity autocorrelation function tends 
to diminish, since in any event they fall off roughly as 
(WoTtl/2. 

The preceding graphical discussion is supplemented 
to advantage by investigating the approximate duration 
during which the exponential term dominates the os
cillatory contribution in the asymptotic formula Eq. (47). 
The condition for dominance is determined by the 
inequality 

[
1 z] ( 2 ) 1 /2 exp(-AT» -1- --

+ Z 7TWoT 
(48) 

sooo 10000 

FIG. 6. Normalized c las sical 
velocity autocorrelation func
tions from Eq. (47) for 
macroscopic times WOT» 103• 
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W T 1 [W T ] [(1 + z) (l£fZ )1/2] ~ (1 - z) - - log .::lL:.... (1 - z) < log -- -- . 
2,1z 2 2fZ 1 - z 1 - z 

Since Eq. (47) holds only for waT large (WaT> 10), the 
log term on the left can be neglected compared to the 
linear term, so that approximately 

2iZ [1£1/2Z1/4(1 + z)l 
WaT< 1-z log (1_Z)3 / 2 l (49) 

For z small this condition cannot be fulfilled; the domi
nance of the decaying exponential term implies the 
necessity of appreciable long range interactions. Ac
cordingly, let z = 1- 21l; then for Il small, from Eq. 
(39) and (40), 

( 
g )1/2 (gll)1/2 A 

wa= Mil ,A=!Vi"" ,Il= Wo «1 (50) 

corresponding to a rotation in the interaction space of 
Eq. (41) by an angle ¢=(1£/2)-(A/WO)' Equation (49) be-
comes 

3 1 A 3 W 
10 < Wo T < -2 log -; 10 - < AT < - log .::Q , 

Il Il Wo 2 A 
(51) 

where the lower limits are fixed by the limit of ap
plicability of the asymptotic representation. Consider 
Il = 0.1 corresponding to z = 0.8 or Wo = lOA. Then 
10< WoT< 35: for WoT> 35 the oscillatory behavior domi
nates. The curve for z = 0.8 of Fig. 4 indeed exhibits 
oscillations for Wo T > 35, but by the time they appear 
the velocity autocorrelation function is almost zero. 
The second form of the inequality of Eq. (51) sets the 
limits upon A T as 1 < AT < 3. 3. Of course for Wo T small 
enough the curves for z < 0.8 will exhibit features of 
exponential decay, as can be seen from Fig. 3. However, 
they are in a time region where the asymptotic rep
resentation does not apply. Because of this, for ex
ample, the z = 0.6 curve shows local exponential be
havior to Wo T '" 4, followed subsequently by large os
cillatory character for Wo T > 4. The latter is large be
cause it starts while the velocity autocorrelation func
tion is still large. The situation gets worse as z is 
smaller. 

This analysis, then, leads to the following conclusion: 
the classical velocity autocorrelation function describes 
essentially exponential decay provided z ~ 0.8 and 
Wo T ~ 10. Under these conditions it is meaningful to 
regard A as a macroscopic relaxation time parameter, 
which must be only one order of magnitude smaller 
than the microscopic cutoff frequency WOo The auto
correlation function, now given by 

kT { ( 2 )1/2 ( 1£)} (v(O) v( T) c '" AI exp( - AT) + Il l£Wo T COS\Wo T - 4" 

(52) 

can be approximated solely by the exponential term with 
the second term neglected for J-L .,;0.2 and WoT~ 10. As 
a consequence, if shorter times are neglected, the fre
quency distribution of Ford et al., adequately predicts 
the process as Gaussian Markoffian for times T ~ 10w0

1
• 

For short times, the process is non-Markoffian and only 
the exact frequency distribution of Eq. (38) and the con-
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sequent correlation function Eq. (44) hold. This argu
ment is independent of the value of Wo which fixes the 
absolute time scale, since its numerical value is deter
mined by g/M as well as J-L. What is crucial is the ratio 
A/ WOo The asymptotic integrations involve setting Wo T 

equal to infinity in the limit of integration, not wO' and 
for Wo T '" 10 this is a reasonable approximation. 

A further implication of the model is brought out upon 
comparison with that of Turner22 and Ullersma, 3 who 
calculated the classical velocity autocorrelation function 
of a heavy particle of mass m H substituted into a one
dimensional lattice of harmonically coupled light parti
cles of mass m L' Turner, using a procedure of Rubin, 23 

showed that the velocity autocorrelation function for the 
heavy mass is given by 

( _ kT Il 1+1 (1 - ,il)1/2 
(V(O)V(T)/ U) = - - (1 2) 2+ 2 cos(xwcT)dx 

m H 1£ -1 - Il x Il 

_ kT {exp(- AT) + Il [_( 2 )3J 1/2 
me 1£ WeT 

X sin (WeT- ~} (53) 

[Il = :: «1, A= J-Lw c' Wc =( ~ y/] 
where the asymptotiC limit was found by Ullersma. 
Comparison of Eq. (46) with Eq. (53) shows, first, that 
the former for any T has an added contribution J o( Wo T) 

which is absent in the latter. As a result both models 
predict asymptotically an exponential decay, but the os
Cillatory part behaves as (WoT)-1/2 in the present model 
while it behaves as (WoTt3/2 in the Turner-Ullersma 
(T - U) model. Secondly, the cutoff frequency param
eterizing the T - U model is just that for nearest neigh
bor interactions while in the present case is itself a 
function of the range of interaction, However, neglec
ting the asymptotic terms, the two models predict ex
ponential decay asymptotically, If we define m H = M, 
m L =MIl/4 the exponential factors of the two models, 
Eqs. (52) and (53) are formally identical, This suggests 
that while here all the particles have the same mass, 
the classical velocity autocorrelation function behaves 
as if a particle of mass M were embedded in a sea of 
light particles of effective mass MIl/4. The parameter 
of smallness in the T - U model is the ratio of light to 
heavy particles masses, which finds its parallel in the 
present scheme as essentially the ratio of a macroscopic 
to microscopic parameter, X/WOo 

The mean square displacement implied by Eq. (38) 
follows by substitution of the third equality into Eq. (25) 

( 2 2kT [1 -z] [ 
(J (t)c=~ 1+z 11 +12 ], (54) 

where 

2["'0 II =-
1£ 

o 

= ~{[(wot)Jo(Wof) -J1(WOt)] Wo 

+ i (wof) [J1 (WOt) Ha(wot) - Jo(Wot) H1( Waf)]}, (55) 
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1 =~f"'o r(W~_W2)1/2] [1-COSWf] dw 
2 1T l A2 + w2 w2 , 

o 

= :2 {W~I1+Jo(wot)-[~~:] [1- ;G::)I(A)]}. 
The first integral is given in terms21 of the struve func
tions Hn and the last term of 12 is the integral discussed 
in Appendix A. With the use of the asymptotic forms of 
the Bessel and Struve functions 

I '" J... {1- [_2_V/2 COsfWof- !.4) 
1 Wo L1T(WOt)3J \ 

(56) 

so that through (wot)- 1 / 2 

(a 2 (t» c 

2kT{[1 + z] f 1 = - -- - - 2" [1-exp(-At)] 
M l-z Wo A 

- ~~ [~::] (1T:
o
tY/2 cos (Wot- ~)]} 

-2Dt, (57) 

Where, consistent with Eq. (31), 

kT 
2(Mg)l/2 (58) 

kT kT 

~ 

kT [1 + Z 1 kT [1 + z] 
D = Mwo 1- z] = MA 2rz • .::! 

MA = 2[(Mgt-t/4)1/2] 

As a consequence, for the nearest neighbor case24 

(59) 

[Z = 0, wot» 1] 

and for long range couplings, expressing Wo in terms of 
A and z (= 1 - 2t-t), then for t-t small 

«(12 (f»c = ~~ [At - (1 - exp( - At»] 

kT [ ( 2 )1/2 (, 1T)] + MA 2 t-t 2 At - 2t-t 1TWot cos \Wot - "4 (60) 

[A=t-tWO' t-t«I, wot»I]. 

The term multiplying t-t 2 can be neglected compared to 
the first term since (1) the linear time factor adds only 
a second order correction to the diffusion constant, (2) 
the oscillatory function is dominated by the exponential 
for the same reasons and approximately under the same 
mathematical conditions as for the velocity autocor
relation function. The first term is the mean square dis
placement predicted by the Langevin theory of Brownian 
motion. 6,12 

We close this section with a speculation. In 1946 
Kirkwood25 derived a molecular theory of Brownian 
motion applicable to self-diffusion of an atom or mole
cule in a medium of similar molecules, such as liquid 
argon. Lebowitz and Rubin26 demonstrated that the 
validity of Kirkwood's results was restricted by the 
condition m H» m L consistent with the T - U model. As 
pointed out by Zwanzig27 this appears to preclude the 
very application which motivated Kirkwood's theory in 
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the first place. It is suggested here that the model of 
Ford et al. implies in fact, that the Kirkwood theory 
holds for equal masses provided one admits the existence 
of effective light host particles, parameterized by the 
range of interaction between the particle of interest and 
the other particles (since all the particles are identical 
they serve as hosts for any given particle). This is not 
to say that a given atom feels direct coupling with an 
enormous number of host atoms at any instant. Rather, 
since Brownian motion involves many collisions over 
any macroscopic time interval-corresponding to 
t» w~1-then in that time interval the collective effect 
of these collisions is as if the particle is experiencing 
long range interactions with particles of equal mass. 

V. DYNAMICAL EFFECTS OF A FINITE QUANTUM 
TRANSIENT TIME 

The model of the previous section ascribed all depar
ture of the velocity autocorrelation function from its 
simple exponential form to the existence of a finite fre
quency distribution cutoff. With the inclusion of long 
range couplings in accordance with Eq. (36), the ex
ponential form is essentially realized for times long 
compared to the inverse of this quantity, within the 
limits discussed graphically. Within the same limits 
the time course of diffusion evolves as the claSSical 
Langevin theory of Brownian motion. When one includes 
quantum effects embodied by a finite quantum transient 
time, the velocity autocorrelation function departs 
drastically from exp( - A T) even within the framework of 
the frequency distribution of Ford et al. (which neglects 
the effects of a finite microscopic interaction time). As 
a consequence, in any event, all vestiges of Gaussian 
Markoffian behavior become lost as T. - 00, with cor
responding modifications of the time course of diffusion. 
These modifications form the subject of the present 
section. 

In general the evaluation of the mean square displace
ment for any temperature is facilitated by expanding the 
hyperbolic cotangent of Eq. (20) in simple fractions 

1 00 1 
cothx = - + 2x 6 -'X2::-+-=-Cn2::-1T

"""2' 
X n= 1 

so that 

(a 2(f»T=2!T {[O 1-~~sWtp(W)dW+2nt In} 

1
"'0 

1 - coswt 2n 21TkT 
I '" 2 2 p(w) dw; an= - = {--;r-)n. 

n 0 an + W T. \ 

(61) 

The first term is (a 2(t» c and the sum reflects the in
fluence of a finite quantum transient time. In prepara
tion for the more elaborate case associated with long 
range couplings, it is instructive to consider first the 
case of nearest neighbor coupling only. Insertion of 
Eq. (38) with z=O into Eq, (61) gives for wof» 1 

(a 2(t» T 

= 2kT t + ~ {2V t 1- exp - n(w~f/v) (62) 
Mwo Mwo 1T n= 1 n(n2 + V2)1 2 
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[v = iWoT q= nwo/21fkT}, 

with the use of Eq. (A5) of Appendix A, while the in
tegrals independent of time are elementary. The sum 
cannot be expressed in closed form, but a simplification 
is achieved by observing that for values of n of the order 
of v, the corresponding exponential terms in this sum 
are insignificant compared to the oscillatory factor 
which behaves as (wott1/2 for any temperature. The only 
terms which compete are those for which n« v. Ac
cordingly the sum is split into two parts 

~ 1- exp-n(w?t/v) _ ~ ( 
S = v U 2 _.2 1 2 - V U n=1 n(n+v-) n=1 

), (63) 

where N is some integer less than v but sufficiently 
large that terms of the order of exp - N(wot/v) are 
neglected. Then approximately 

S =~ 1-exp-n(wot/v) [ n2] [f~ dn 
n~ n 1- 2v2 + v N n(n2+v2)172 

- 2N(~: lJ2)1 72J 

'" {lOg v [1 - exp( - wot/v)] + (log 2 + y) 

1 exp-(wot/v) } 
+ 27 [1 - exp - (wot/v))" • 

(64) 

The second expression follows from the first in Eq. (64) 
by approximating the first sum by 10gN +y + (1/2N), 
extending the sums over the exponential terms to in
finity, and approximating the second sum over the con
stant terms of Eq. (63) by the Euler-Maclaurin sum
mation formula. 28 The last factor in the second expres
sion can now be neglected; even at T = 0, where it is 
largest, it behaves as (woo-2. Then substitution of Eq. 
(64) into Eq. (62) gives 

(a 2(t) T 

= 2DT q {lOg [Wot( Si~:/T q) ) J 
- COth(~) (2;ot Y'2 cos (Wot- ~)+ const.} (65) 

[D ==kT /Mwo, const=::: log2 +y], 

for the mean square displacement through (wotr1/2. The 
first term is just another way of expressing Eq. (35), 
so that the error in approximating the frequency distri
bution for nearest neighbor coupling as constant over the 
whole temperature range is the OSCillatory term dimi
nishing as (wotr1/2 also over the whole temperature 
range. It follows from Eq. (21) that the asymptotic 
functional form of the velocity autocorrelation function 
is insensitive to the temperature 

nw (nw )( 2 )1/2 l 7T) <V(O)V(T)T=~COth 2ij. 1fWoT COS\WoT-"4' 

(66) 

With this caveat we are now in a position to consider 
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the inclusion of long range couplings embodied by the 
model of Eq. (38). Its substitution into Eq. (61) results 
in 

(a
2
(t)T=:::2!T {[(/_-2~)1!~ ~ -x~ (1-exp(-xt))} 

+ [M~:ki] {t1 [p2 ~ n2] 

[ 
p[1-exp-n(wgt/v)] 

X n{1- [iJ./P(1 _ iJ.)]2(p2 _ n2W!2 

- (1- exp(- xt))J} 

- [MA(1- :~: _ 2iJ.)172j COth(~W;) 

x( 7T~otr/2 cos (Wot - ~) 
[z=1-2iJ.; P=IlA/21fkT=AT.!2], (67) 

with the use of Eqs. (39), (57), (A5), and (A6). Corre
spondence to the classical Langevin theory is achieved 
by the approximation of setting iJ. == 0, in which case, 
with kT == 1lA/21fP 

(a2(t) ~L) 

== ~ {.! [At + exp(- At) + 1] + 2[</i(p) +y] M7TA p 

t neXP(-Al)-peXp-n(At/p)} 
+ 2P

n = 1 n[p2 _n2] 

[ 
1" 1 ] 

</i(P)+y= - P +Pn~ n(n+p)J' 

(68) 

where constant factors have been expressed in terms29 

of the Euler psi function </i(p). The superscript (L) de
notes the present iJ. = 0 approximation corresponds to the 
classical (Langevin) result for Brownian motion when 
n = 0 [Eq. (60)]. It implies that for all n, the square 
root factor in Eq. (67) is set equal to unity, which means 
iJ. 2 

/ p2 = 0, or A = iJ. Wo and nwo/21f kT =::: 00. This is strictly 
true for all temperatures if Wo is considered infinite: 
the approximation of the Ford model [Eq. (68)] is 
equally obtained by direct use of p( w) for z - 1 of Eq. 
(42). The next approximation is to expand the square 
root for iJ. 2 small, a procedure valid for all n such that 
(iJ.n/p)2 «1, or n« v. This is the same condition which 
motivated the approximate evaluation of the sum ap
pearing in the nearest neighbor coupling model. The 
first correction to (a2(t)~L) (proportional to iJ.2) is 
calculated in Appendix B using a Similar procedure. To 
facilitate computation of (a 2(t)<.f) itself there is little 
loss in generality by first restricting P to positive in
tegers 1, 2 .. ·. This implies investigation of cases for 
temperatures sufficiently low that the quantum transient 
time is greater than the classical relaxation time. The 
zero temperature limit for fixed A corresponds formally 
top=oo. The n=p term in the sum of Eq. (68) is 
- (2p2 )-1(1 + H) exp(- At) so that after some manipulations 

(a2(t) ~L) 

2D {At = _0 - (1- exp(- At)) + 2[</i(p) +y] 
A P (69) 
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+ (2 - exp(- At) - exp(At)) log[l- exp(- Atlp)] 

[ 
~ exp+n(Atlp) 

- exp(- At)LJ 
n=1 n 

+exp(At)~ eXp-n(At/P)]} 
n=1 n 

[1f;(P)+Y= ~ ~, p=l, 2 ..• ; Do= 2:M]. 

Thus, for example, 

(O' 2(t) <;) 

= ~ {At(1 - exp( - At)) + (2 - exp( - At) - exp(At)) 

log(l- exp( - At))} [T.P= =;'~ -1] 

=~{~ (l-eXP(-At))+2~-COSh ~t) 

+ (2 - exp( - At) - exp(At)) log(1 - exp( _ AtI2))} [ p = 2) 
T.=4A ~ 

2D {At (At 2At) = ~ "3 (1- exp(- At)) + 3 - 2 cosh ""3 - cosh -3-

+ (2 - exp( - At) - exp(At)) log(1 - exp( - AtI 3))} 

[T.~~~-J (70) 

and so on. In the general case, for long times At» 1, 
expanding the logarithm in Eq. (69) and collecting 
terms 

(O' 2 (t) <.fl 

= ~ {~(1- exp(- At)) + 2 [1f;(P) +y + lJ 
A P 2pj 

r
2 

2 ~ exp - n(At/p) 
- t P ~ n(p2 _n2) 

+ o [exp - (1 + P-l)At]} 

+ -.! exp(- At~ 
2P ~ 

(71) 

while for small times At« 1, expanding the exponentials 
through t2 and performing the sums 

(O' 2 (t) <.fl= (If>.../Mrr) t2 (A p - logAt) 

Ap = M + logp) - [1f;(p) + y + (2p)-1l). (72) 

These results differ from the classical expression of 
Eq. (60) (with the second term neglected) 

[D =kT IMA] (73) 

primarily in that there are p - 1 exponential contribu
tions which decay slower than the Single exponential 
factor of the Langevin theory, accompanied by a corre
sponding reduction of the linear time term by a factor 
of l/p. For small times the mean square displacement 
is similarly proportional to f, but modulated by a 
logarithmic factor. It is also to be observed that the 
exponential terms enter with opposite Sign than does the 
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single one of Eq. (73). As a consequence, the corre
sponding velocity autocorrelation functions are negative. 
From Eqs. (21) and (69) 

(v(O) V(T)~L) 

= - 2~M {* (1 + ATexp(- AT)) + (exp(- AT) + exp(AT)) 

x log(1 - exp(- AT Ip)) 

r. ( ) ~ exp+n(AT/p) 
+ Lexp -AT ~ n 

+exp(AT) E exp-:(AT/P)j}, 

=_ If>... {2~ nexP
2
-n(AT/p) + _pI (AT--21) 

2rrM n=1 P - n 

X exp(- AT)}, 

AT» 1, 

AT«I, 

so that for example 

(v(O) V(T)V') 

= - ~ {(I + ATexp(- AT)) 
2rrM 

+ 2 coshH log( 1 - exp( - AT))} [P = 1] 

If>... {I AT = - -- - (1 + ATexp(- AT)) + 2 cosh-
2rrM 2 2 

(74) 

(75) 

} 

[P= 2] 
+ 2 coshA Tlog(l- exp( - AT /2)) 

1'iA {I [A T 2A 1J = - 2rrM "3(1 + ATexp(- AT)) + 2 cosh 3'" + cosh -3-J 

+ 2 coshATlog(l- exp(- AT /3))}. [P = 3] 

Within the framework of the model, departure of the 
velocity autocorrelation function from its simple ex
ponential (Gaussian Markoffian) behavior at any finite 
temperature exhibits the added feature of "persistent 
memory" for temperatures sufficiently low that AT q > 1. 

The mean square displacement and velocity autocor
relation function at absolute zero are characterized by 
complete disappearance of an asymptotic linear depen
dence upon time of the former quantity and a parallel 
disappearance of an exponential dependence of the latter. 
The results are most conveniently expressed in terms 
of exponential integral functions defined by19 

f e exp(-t) ~ (-x)" 
Ei(-x)=- t dt=y+logx+ 6 -,-' 

n=1 n. n 

t
X

'" e ( t) ~ x" (76) 
E*(x)=- xp - dt=y+ logx+ 6 -, - . 

t n=1 n.n 
-x 

Then 

~;n ~ eXP±nn(At/
p

) = ~~~{RI ! + ~ :! (~At)" 
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x [(p ~l)n + (p -21),,"1 .. j} 
-logp + I' + t (± At)n 
- .=1 n!n 

[
E*(At) 1 

= Ei( _ At)J + logp - logAt 

Lim [IOg(l- exp( - At/P))] = [lOgAt -lOgp]. 
p_ ~ lJ!(p) logp 

Consequently, Eqs. (69) and (74) reduce to 

(v(O) v( r»~L) = - (1Vt/2rrM) [exp( - AT) E *(A r) 

+ exp(A r)Ei( - A r)], 

(u 2(t»6 L ) = 2Drq{(y + 10gAt) - t [exp(- Xt)E*(At) 

+exp(At)Ei(-At)]} [Drq=n/rrMA], 

(77) 

(78) 

the logp factors cancelling. These quantities represent 
the effects of quantum fluctuations due to zero tempera
ture vibrational energy of the normal modes. From the 
asymptotic properties of the exponential integral 
functions 

[

-n/'lfMAr, Ar»1 J 
(v(O) v( r»6L ) = , 

- (1Vt/'lfM) [I' + 10gA r], A r« 1 
(79) 

(U2(t»~L) =[2Drq lOgAt, xt» 1]. 
(1Vt/'lfM) net - y) - logxt], xt« 1 

Replacing the classical single exponential dependence is 
an asymptotic r-2 dependence at zero temperature for 
the velocity autocorrelation function; the linear time 
dependence is correspondingly replaced by a logarithmic 
dependence for the mean square displacement. In the 
latter case, the asymptotic time evolution is just as for 
slowly varying frequency distributions with Wo formally 
replaced by A. However, Wo is essentially infinite in 
the present approximation, so that the approximate 
method of Sec. III would lead to divergent results. The 
absence of the divergence is because that method is 
inapplicable here, since the frequency distribution be
haves as w- 2

, which is fast varying compared to the 
linear denominator of Eq. (23). It is to be noted, how
ever, that the logarithmic drift is via a rather torturous 
route through exponential integrals. 

Approach to the high temperature classical limit can 
be studied by substituting p= l/q in Eq. (68). The sum 
over constant terms can be expressed as a cotangent and 
n eliminated through q, so that 

(u 2(t» <;) 

= z: {xt-[I-(~ cot~)eXP(-xt)] 
+ ~ [I/J(.!) + I' + ql + ~ t exp~ - znqxt)} 

q q j q nol n(n q - 1) 
(80) 

= z: {xt- [1-G cot~) exp(- xt~ 
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Similarly, 

(v(O) VeT»~ ~L) 

xt» 1, 

:=- -cot- exp(-AT)+2q:0 22 ' 
kT~r1T 'If) e nexp(- nqAr)j 
M q q n=1 n q - 1 
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(81) 

= ~ [(~ cot~)eXp(-Ar)+ i~1 eXp(-qAr)} AT»I, 

= ~ [B q - ~ 10gA T], A r « 1 

[s.c- -~ & + 210gq + 2y + 21(1/q)]] 

The progression of q through increasing values corre
sponds for fixed A to increasing the temperature such 
that the quantum transient time becomes progressively 
smaller than the classical relaxation time. As q - 00, 

the sum terms vanish exponentially and I' + I/J (1/ q) goes 
to - q so that Eq. (80) reduces to the classical result of 
Eq, (73), and correspondingly the velocity autocorrela
tion function assumes its single exponential form. The 
velocity autocorrelation functions are now positive, 
and correspondingly the classical exponential factor 
always dominates the mean square displacement for long 
times, the only vestige of quantum effects being the 
cotangent factor. On the other hand, for short times, 
both quantities are characterized by a logarithm as in 
the low temperature case (except when q is truly in
finite). The situation is summarized by saying that for 
low temperatures such that the quantum transient time 
is greater than the relaxation time, the velocity auto
correlation function is negative; it and the mean square 
displacement are dominated by many Significant ex
ponential terms whose numbers increase as the tempera
ture gets lower. For temperatures such that the quantum 
transient time is less than the relaxation time, the 
quantum features are preserved for short times but are 
lost for long times. In this case diffusion evolves 
asymptotically to the classical form, differing only in 
the temperature-dependent cotangent coefficient. Corre
spondingly, the always positive velOCity autocorrelation 
function unfolds from its low-temperature-like form to 
its classical Gaussian Markoffian form, multiplied by 
the same coefficient. 

These considerations define a critical temperature 
T c such that at T c' T q = X -1. What is special about T c is 
that when the quantum transient time is equal to the 
relaxation time (q = 2) the cotangent coefficient vanishes. 
As a result, the velocity autocorrelation function in the 
process of "turning around" from negative to positive as 
one proceeds from low to high temperatures decays 
faster asymptotically (as exp( - 2x r» than at any other 
temperature. The sums in Eqs. (80) and (81) can be 
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evaluated by expressing them as integrals. Specifically 

2 ~ exp( - nq'At) 2 -6 (22 1) =51+52 +-log(l-exp(-q'At)), 
q n=1 n n q - q 

l
eXP(-H) 

;., exp( - nq'At) ('I) x·-2 
d 51 = U 1 = exp - I\. -1--. x, 

n=1 nq- o-x 

(82) 

52

-- ~ exp(-nq'At) jeXP(-H) dx 
L.i =exp('At) 0 I-x. -1, 

n = 1 nq + 1 

so that for q = 2 

, (L) kT [ . (l+eXP(-'AT)) ~ 
(V(O)V(T)T =7:1 cosh'A'Tlog l-exp(-'AT) -IJ, 

=.j(kT /M) exp( - 2x T), X T» 1, (83) 

=(kT /M) [(log2 -1) -logXT], 'AT« 1, 

(a 2 (t) <.f) = ~D ['At + 10g(1 - exp( - 2'At)) 

+ cosh'At 10gG ~ :~::) - 210g2 J. 
= (2D/'A) ['At + (1- 210g2) + texp(- 2'At)], xt» 1, 

= (kT /M)f[(log2 + t) - 10g'At], 'At« 1. 

Higher finite temperatures corresponding to higher 
values of q can be investigated according to the prescrip
tion of Eq. (82) for the sums, although the expressions 
rapidly become complicated. A more complete analyti
cal and graphical treatment of the contents of this 
section will be presented elsewhere. 30 

As a final note, it should be added that due to the 
integrals approximation that Wo T » 1, the velocity auto
correlation functions computed here, which include 
logarithmic behavior, are not defined at T = O. The value 
must be given by Eq. (18) which, at zero temperature, 
predicts the mean square velocity for the geometric 
progression model to be 

( 2) = ~ [~J 1 [1 + ti] v eQ2M ~ og ~ 
7T vz I-vz 

m.. 2w 
"'-log.::=:.ll.. 

7TM 'A 
(84) 

In this connection, the Langevin theory, by construction, 
reduces the mean square displacement to that of a free 
particle for 'At small. The log 'At term which modulates 
the t2 behavior in the present scheme (persisting at all 
finite temperatures and vanishing only in the classical 
limit) reflects the fact that while 1 is much less than 
'A -1 it is still much greater than W O

l • Thus the particle 
has suffered many collisions and is not free. The persis
tence of the logarithm indicates collisional effects due to 
nonthermal quantum fluctuations. At absolute zero 10gAl 
is the only thing that essentially survives [note its 
presence for both 'At large and small in Eq. (79)]. As the 
temperature goes up, competitive thermal fluctuations 
progressively reduce its importance until the quantum 
contribution to the diffusive process is completely 
swamped out at infinite temperature. This effect could 
never appear, of course, in any classical theory. An 
assessment of the present quantum modifications of 
classical Brownian motion will be made in Sec. VII. 
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VI. OTHER TYPES OF DIFFUSIVE MOTION 

The geometriC progression model yielded mean square 
displacements for large times proportional to t in the 
classical limit and proportional to logt in the limit of 
zero temperature. This was a consequence of the fact 
that the frequency distribution at zero frequency for this 
model is finite and nonzero. The aim of the present 
section is to investigate the consequences of examples 
for which, on the contrary, prO) is infinite or zero. 

The first case is afforded by the following force 
constant distribution 

( )m+l [(L -1)!(L + I)! 1 1 2 L (85) 
gm= -1 g (L-m)!(L+m)! ,m= , •••. 

Insertion into Eq. (9) yields 

W
2 = w2 sin2L (~) 
J 0 2N+l (86) 

2 _ ..K. [22L(L -1) !(L + I)! ] 
wo- M (2L)! . 

By inversion, the frequency distribution is 

2 { [tW )21L ~1/2}-1 p(L)(W) = -L W + -1 , 
7T W 

(87) 

where the subscript (L) now denotes that the range of 
coupling extends through the Lth neighbor. For L = 1, 
Eq. (87) is the same as the nearest neighbor case, but 
if L > 1, p(L >r0) is infinite. If, for illustration, one 
formally includes only nearest and next-nearest neighbor 
coupling: gl =g, g2 = - g/4, gm = 0 (m> 2) and 

(2) 1 1 
p (w)=:;r (WOW_W2)1/2 

From Eqs. (22) and (24)21 

(v(O) V( T) ~2) 

2 4g 
W --. 0- M 

= kT J (£) W T kT 1 
cos .=ll..:.- - -M 0 2 2 M (27TWo T)1/2 

X[I + COSWoT+ sinwoT] 

(V(0)V(T)62
) 

=~[Jo(¥) . ~] sm 2 

(88) 

(89) 

As for nearest neighbor coupling, the correlation func
tions decay as (wo T)"1/2. But the mean square displace
ments predicted by Eqs. (23) and (25) are very different. 
Setting a = wot, 

-- -- t l kT ~ 32 )1/2 3 2 

M 97TWo 

(90) 
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(a
2
(t»6

2l =! t ~o(%) sin % -J1(%) cos %] 
_ !i. (~)1/2 + OU-1/2). 

M 1fWo 

For times sufficiently large that the t1/2 contribution 
can be neglected, the classical mean square displace
ment is proportional to t3/2

• This result is "midway" 
between the free particle t2 behavior and the usual linear 
time behavior characteristic of a diffusing particle with 
constant diffusion coefficient. In contrast to the loga
rithmic drift discussed previously, the present mean 
square displacement at zero temperature goes as t1/2 . 
While a constant diffusion coefficient implies that the 
classical displacement evolves in time exponentially 
compared to the zero temperature displacement, in the 
present model the former exceeds the latter only linear
ly in time. It is striking to note that roughly the same 
asymptotic form of the velocity autocorrelation function 
(7-1/2 ) is consistent with diffusive behavior as varied as 
logt, t, [1/2, and p/2. 

For the general case of coupling through the Lth 
neighbor the classical mean square displacement is 

< 2( »(Ll 4kT f fa l-cosx 
ate = 1fML a1/L Jo X(3L-1l!L [1_(x/a)2/LY/2 dx. 

(91) 

As long as constant and decaying oscillatory terms are 
neglected, it is legitimate to expand the square root in 
powers of (x/a) keeping terms only through (x/a)L-l, and 
subsequently integrating term-by-term with the upper 
limit of the integrals put at infinity. The result is an 
Lth order polynomial 

<a2(t»~L ) 

_ 2kT 2-11L L-1 e(L) 1 
-- M 2 a 6" -;;2nTi' a = wot» 1 Wo n =0 a 

(92) 

e~L) = (2n)! {(2"n!)2 [2L - (2n + 1)] 

For L == 1, 2 Eq. (92) reproduces the results obtained 
above. For times so large that a-21L can be neglected 
compared to unity, the n == 0 term tends to dominate the 
other terms so that 

(a 2(t»(Ll _ ~ r.(2L_l)r(2_~)sin2-]-1 a2-11L 
c Mwo L L 2L . 

(93) 

This dominance takes longer and longer to achieve, 
however, as L gets large. In order for the ratio of the 
first neglected term to the lead term to be E« 1, a must 
be of the order of (E)-LI2: a= 105 for L == 10 and E==O. 1 
for example. In the limit that L - 00, w~ - (g/M) (21fL )1/2 
and 

(cr2(t»'Ll1;:;.'" 2kT [.1L (21fL)1/21-1/2L [2-1IL 
c a-'" 1fM M J ' (94) 

where L now is arbitrarily large. The classical mean 
square displacement asymptotically approaches that for 
a free particle, although, of course, L cannot be set 
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equal to infinity since then the frequencies and frequency 
distribution are undefined. This result can be interpreted 
by examination of the ratio of successive force constant 
terms 

I gm+1 I L - m 
I gm 1= L +m + 1 

(95) 

This ratio gets smaller as 1/2L for m of the order of 
L, and gL - 0 as L1/2/22L for L large; but for m «L the 
ratios tend to approach unity. This mathematical be
havior parallels formally the asymptotic behavior of 
the geometriC progression model as z - 1: the cutoff 
frequency tends to infinity while long range couplings 
tend to make equal dynamical contributions independent 
of range (m). In the latter model, however, the relative 
strengths of the couplings did not affect the finite be
havior of prO) and served only to affect the mode of ap
proach to a linear dependence on time (in accord with 
the Langevin theory of Brownian motion). In the present 
model increasing the relative strength of the couplings 
is tantamount to increasing the range of the couplings 
(L), directly affecting thereby the nature of the singular 
behavior of the frequency distribution at zero frequency. 
As a consequence the asymptotic time dependence of the 
mean square displacement becomes a sensitive function 
of the singularity which goes as w -( L-11 L). The zero 
temperature mean square displacement shows the same 
sort of effect. Substitution of Eq. (87) into Eq. (23) 
leads to a polynomial of (L + 1)/2 terms for L odd and 
L/2 terms for Leven. 

e~ = (2n)! {(2"n!)2 [L _ (2n + 1)] [r (L -:n -1)J 
x [COS1f (2;; 1) ]} -1, 

4 1 (L-1)! 
B L = 1fL 2L [«L _ 1)/2)! ]2, ' 

[

L ~3 , 

PL = L 
--1 
2 ' 

L odd 1 
L evenJ 

(96) 

Again, for a large, the n = 0 term is dominant, and when 
L is large as well, the coefficient of the log term for 
L odd is smaller than C~ -1/L by a factor of L- 1

/
2

• Thus, 
in general, 

(97) 

and the dependence approaches t although the coefficient 
multiplying the time gets small as L -1 while it remains 
finite in the classical limit [Eq. (94) J. The asymptotic 
vanishing of the mean square displacement at zero 
temperature here as a linear time dependence is ap
proached parallels that for a free particle, consistent 
with Eq. (94), and the conclusion (a 2(t» c/«(J2(tl>o - [ 
which was demonstrated for the particular case of L = 2 
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is a general result for any L ~ 2. It is interesting to 
note that the approximate linear dependence of the zero 
temperature mean square displacement upon time for 
L large is similar to classical diffusion in the limit that 
M is small such that 

Lim ML=m o M- 0 

L- ~ 

exists. 

At the opposite extreme, the vanishing of p(O) tends 
to depress the diffusive process or even possibly elimi
nate it completely. As an example, if the couplings fall 
off as the inverse square, so thae1 

2 4w~ [ ( j7T ) (j7T )2J 2 ~ 
W j = ---:;T2" 7T 2N + 1 - 2N + 1 ,wo = 2M 

then the frequency distribution 

p(w) = w/[wo(w~ _ w2)1/2] 

(98) 

(99) 

vanishes as w as w - O. The velocity autocorrelation 
functions in the classical and zero temperature limits 

( 
7T )1/2 ~ 7T) X -- cos w r--

2wor 0 4 
(100) 

again decay asymptotically as (wo r)-1/ 2 over the whole 
temperature range. However, in this case, diffusion 
only occurs in the classical limit. 

(101) 

The classical result is parallel to the zero temperature 
result for the nearest neighbor lattice, since the inte
grals are identical. At zero temperature, rather than 
diffusing, the particle assumes a stationary equilibrium. 
It is just this circumstance which characterizes three
dimensional crystalline lattices at all temperatures. 
The reason is31 that vibrational frequency distributions 
of solids vanish at low frequencies as w2

• Thus, for a 
Debye solid, 

the velocity autocorrelation functions are 

(v(O) v( r) ~D) 
(v(O) v( r)6D ) 

(102) 

(103) 

l
3kT [Sinx + 2 cosx - 2 sinx] l 
M x ~ x3 

- 3liWD [Sinx + 3 cosx _ 6 sinx + 6(1 - COSX)] 
2M x ~ x3 X4 
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and the associated mean square displacements evolve 
to equilibrium values 

{
(a 2(t)?)l 
(a 2(t)6D ») 

\ 
6kT [1 _ Sinx] 

Mw2 x _ D 

-h _li_ r1 _ 2 sinx 
~2MwD L x 

[x= wDt]. 

+ 2(1 - cosx)l 
x2 J 

(104) 

The physical process underlying all these models can 
be understood in a general way by expressing the mean 
square displacement in terms of the position autocor
relation function. From Eqs. (7), (12), and (15) 

Ii fWO coswr (liW \ 
(x(O)x(r)T= 2M -w-- coth 2ki) p(w)dw 

o 

(105) 

(a2(t)T=2[(~)eQ-(x(0)X(t)T]' (X2(0) = <x2)eq· 

If the position autocorrelation function is a divergent 
integral for any time then, in particular, (~)eq is not 
defined. In such a case, the mean square displacement, 
which is the difference between two divergent quantities 
grows in time, characteristic of diffusion. This is the 
common property exhibited by all the frequency distri
butions considered, except for the Debye distribution 
for a solid. In the latter case, the equilibrium mean 
square displacement is finite and the position autocor
relation function decays in time similar to the velocity 
autocorrelation function. In the context of the present 
fOl'malism, diffusion represents the fruitless search of 
a particle in coordinate space for an equilibrium position 
dispersion which does not exist. This point of view sug
gests that the frequency distributions considered here, 
and others which can be developed along the same lines, 
may provide analytical models to aid understanding of 
dynamical processes in liquids. 

VII. IMPLICATIONS OF HARMONIC MODELS 

The motivation of the present work, in common with 
that of previous investigators, has been to deduce fea
tures of transport phenomena from an underlying simple 
dynamics. Two questions are of importance concerning 
specifically harmonic models. The first is one of 
principle: why should an harmonically bound particle ex
hibit diffusive behavior in any approximation? The 
answer resides in the concept underlying all these 
treatments that irreversibility, which diffusion reflects, 
appears because the particle of interest (the "system") 
interacts with a large number of other particles (the 
"heat bath"). Diffusion occurs only in the limit that the 
number of heat bath particles is truly infinite, which is 
the approximation of Eq. (12). If, on the other hand, N 
is finite, irreversibility appears as such for times 
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short compared to a recurrence time T p(N) charac
teristic of a Poincarl! cycle, while for times of the order 
of T p the system approaches its initial dynamical state. 
As N goes to infinity so does the length of the recur
rence time. These points have been investigated by 
Mazur and Montroll32 in connection with the classical 
velocity autocorrelation function for the nearest neigh
bor lattice. A still simpler example is afforded by the 
following force constant distribution, similar to Eq. (98) 
but with alternating sign: 

gm=::(_1)m-1(g/m2
), m=::1,2 .. • 00 , (106) 

so that from Eqs. (9) and (16)21 

=~ = 21fj . T (N) = (2N + 1)1f 
w J 2N + 1 T p(N) , p wo ' 

kT 1 
(V(O)V(T)c= M 2N+ 1 

+N 

6 
i=-N 

. ( 21fT \ 
COS] Tp(N)J 

_ (grr2)1/2 wo-
2M . 

(107) 

_ ~ _1f_ sinwo TTl(;."" kT sinwo T 

- Mwo Tp(N) sin(1fT/Tp(N)) M WoT 

The frequency distribution is independent of frequency, 
p( w) = W~I, a feature noticed by Brillouin. 8 As long as 
N is finite, the velocity autocorrelation function repeats 
its value in time T p' and decays only in the approxima
tion that T« T p - 00. Similarly the mean square dis
placement with respect to the center of mass evolves as 
2Dt only in the double limit N - 00 (first), then t - 00 

(second). Using the same procedure as employed in 
Eqo (77). 

Tp-oo 

''r hermodynami c 
Limit" 

+ f (-1)n(Wot)2nJ 
n=l (2n)! 

t-"" 2Dt, 
"Dt ffuaio n 

Limit" 

D = (1f/2) (kT /Mwo), 

(l08) 

where Si(x) - 1f /2 is the sine integral. 28 From the first 
equality, with N large but finite, the mean square dis
placement evolves from zero at t = 0 to a maximum 
value of (1f2kT/2Mw~)N at t=Tp/2, returning to zero at 
t = T p' These results are true only to an approximation 
however, since the sum of Eq. (9) should strictly ex
tend to N in this case not infinity. A more rigourous and 
complete treatment will be presented elsewhere. 30 

That diffusion implies time scales so small recurrence 
times are neglected is, as stressed by Berne, 10 a gen
eral dynamical principle. 

Tb,e second question, of practical relevance is, how 
realistically applicable to liquids is a formalism whose 
construction is patterned after a harmonic solid? One 
positive connection is the fact that Eq. (24) implies 
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p(w) is the Fourier transform of the velocity autocor
relation function. This relationship is true for liquids, 
p(w) in such cases referred to as the spectral density. 33 

Egelstaff34 has noted that the value of the spectral den
sity at zero frequency yields the diffusion coefficient, in 
parallel to Eq. (31). On the negative Side, of course, 
long range harmonic couplings do not exist. If harmonic 
models are to provide an adequate base upon which to 
investigate problems in liquid dynamics, their success 
would rest upon cancellation of two errors: the error of 
introducing harmonic potentials at the outset com
pensated for by including many of them through long 
range couplings. The geometric progression model of 
Eq. (36) includes the feature that successive force con
stant terms are of opposite sign. As a consequence each 
particle of the system is experiencing a superposition 
of repulsive as well as attractive forces: the contribu
tions of the former tending to push the particle offset 
the contributions of the latter which tend to bind the 
particle. The resultant effective potential can be inter
preted as an approximate resolution of, and interplay 
between, attractive and repulsive forces characterizing 
true molecular interactions in liquids. For low values 
of z, short range couplings dominate, but they are 
sufficient to reproduce qualitatively the velocity auto
correlation functions of computer molecular dynamics 
studies. As z approaches unity longer range couplings 
take on greater Significance and the phYSical picture 
changes to that of a heavy particle embedded in a heat 
bath of effective light particles. In this case the particle 
is experiencing an enormous number of significant 
interactions which finds its parallel in the large number 
of collisions suffered by a particle of colloidal size im
mersed in a liquid. However, the most gratuitous ac
ceptance of this interpretation must be tempered by the 
following objection to the low temperature extrapolations 
of Seco V. While the Ford model and the present geo
metric progression model which purports to be its ex
tension reduce in the classical limit to the prediction of 
the Langevin theory as far as time evolution is con
cerned, the origin of the relaxation time parameter is 
very different. In the former cases:\. emerges as a 
purely mechanical quantity, while in the latter case it 
is identified as proportional to the viscosity, itself a 
function of temperature. One could formally introduce 
temperature dependence into A by postulating, say, that 
z is some function of T, but in the abSence of some 
guiding principle, making the range of coupling itself 
temperature dependent is a procedure devoid of founda
tion. On the other hand, identification of the friction co
efficient to the viscosity is independent of the dynamics 
predicted by the Langevin equation and appears as a 
separate postUlate. The position taken here is :\. = kT /MD 
should be regarded formally as a parameter whose value 
is fixed by the empirically determined value of the dif
fusion coefficient for a real liquid, and speculate that 
observation of a particle of macroscopic size suspended 
in a superfluid may exhibit mean square displacement 
patterns departing from the classical theory of Eq. (73) 
in accordance with the general prediction of Eq. (68). 
As the examples of Eq. (70) show the quantum effects 
are of a rather complicated form. While it is, of course, 
impossible to detect any system at absolute zero, the 
T = 0 calculations are included to show the extrapolations 
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to zero temperature which would be indicated by very 
low temperature measurements. 

Models of diffusion considered in Sec. VI are repre
sentative of physical situations in which the diffusion co
efficient varies in time. This implies that the particle 
mass is changing as it moves due to chemical reaction 
or some other mechanism. In such cases particle 
motion would be in response to inelastic as well as 
elastic encounters, and the former would tend to either 
promote fragmentation into lighter parts or association 
into a heavier species (as in coagulation). While the 
examples were chosen primarily to illustrate matters 
of principle, it would be of interest to develop more 
realistic frequency distributions which might reflect the 
essential features of sucq processes. 

Future communications intend to deal with other force 
constant distributions, other transport processes and 
general considerations of the response of these systems 
to externally applied forces, 
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APPENDIX A. INTEGRALS 

The calculations of Secs. IV and V in connection with 
the theory of Brownian motion reduced in many cases to 
the following integral for wot large: 

(AI) 

As a first approximation the limits in the second ex
pression are extended to infinity and the integral evalu
ated by contour integration in the upper complex plane, 
enclosing the pole at ict(> 0). Then 

J(c)= 2: (w~+c2)1/2exp(_ct)+I', (A2) 

where l' is the error introduced by extending the limits 
to infinity. The first correction is found by integrating 
the first equality in Eq. (AI) by parts. After some 
rearrangements 

l(c) = ~ ~ J1(wot) 
2 w~ + c2 wof 

+ ~ { [(WOt)2 + (ct)2r1 [o~ot 
(A3) 

f +wot x[(w 1)2 _ X2]1/2 } 
+ 2 -wot [) + (ct)2J2 sinx dx . 

After extending the limits to infinity, subsequent con
tour integration of the two integrals produces again the 
first term in Eq. (A2). Consequently the first correction 
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to l' is the Bessel function factor. Retaining only the 
first term of its asymptotic expansion for wot large 

J(c)= - (w2+c2)1/2exp(_cl)+ -rr (rr)1/2 
2c 0 2 

(A4) 

This result was used without proof by Ullersma in con
nection with his velocity autocorrelation function calcu
lations (see text). The calculations of Sec. V involved 
the following two types of integrals expressible in terms 
ofl(c); 

f W
O cos wl dw 1 ~ rr ] 

o (w2 + a~)(w~ - W2)1/2 = w~ + a~ r(an) + 2" Jo(wot) 

[

0 (w~ _ w2)1 /2 coswt 1 
o (a~+w2)(X2+W2) dW=x2_a~ [I(an)-I(X)] 

rr 

[
( W2 + a2)1/2 x 0 n 

an 

(w~ + X2)1/2 
X 

retaining terms only through (WOt)-l /2. 

exp(- ant) 

exp(- At)] 

APPENDIX B. CORRECTION TO < a 2 (t) (;) FOR 
FINITE MICROSCOPIC INTERACTION TIME 

(A5) 

(A6) 

The mean square displacement of Eq. (68) which 
reduces in the classical limit to the Langevin result, 
assumes IJ. "'X/wo=O. The first correction to this ap
proximation is found from Eq. (67) by expanding terms 
in IJ.. To lowest order in IJ. 

(B1) 

Where, following a procedure similar to that of Eq. (64) 

+ Lim [t 1 - exp - n«wQ/v)t) 
N-oo "",1 n 
u~o 

-l~ n(pZ !:2y /2)] } 
and with the identity 2rrkT/n=wo/v=A/P=Aq, 

CT(t) 

= :rrA g~ + 10gB (1- exp(- At/P)~ 

(nw)(2rr)1/2 (, rr)} 
- coth ~ wof cos ,wot - 4' 
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+ [const= (If/rrMA) (y + ~ + log2)] (B3) 

kT { 2 [1 -exp( - qAt)] = -- At+ - log MA2 q j.J.q 

- ~ COth(~~?) (~:t Y'2 cos( wat - ~) } 

+ [const.]. 

Thus, for example, at zero temperature (p = co), with 
the use of Eq. (79) 

(a 2(t)o=2DT. [1 + (j.J.2/2)]logU, U» 1 (B4) 

and in the classical limit (1f=0, q=co), Eq. (B3) reduces 
to the second term of Eq. (60). 
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A summation relation is given for U(N) Racah coefficients which has the form of an orthogonality 
relation. or a composition of recoupling transformations, except that the sum~ation over colu~n 
indices (for fixed row indices) is over multiplicity labels only. In the recoupling matnx for [f] X 
[f'] X [f3] ~ [f], U(N) irreducible representations [f') and [f3] are limited to be elementary, . 
[11...10 ... 0]=[1 k]. or totally symmetric [k], or of the form [k N -I]. Results are tabulated as functI~ns 
of the axial distances in [f] for [f']=[lN-I]. [IN-,), or [2N

-
1
]; [f3]=[1], [I'], or [2]; all cases which 

arise in the evaluation of squares of matrix elements of one- and two-body operators averaged over 
irreducible representations of U (N). 

1. INTRODUCTION 

In recent years the Wigner-Racah calculus for the 
unitary groups U(N) has been brought to a state of 
development comparable to that for the angular mo
mentum calculus for SU(2). Biedenharn, Louck, and 
collaborators, 1-6. especially, have developed powerful 
methods which make it possible to calculate all Wigner 
and Racah coefficients for U(N). For the case of multi
plicity free and extremal Wigner couplings, in particu
lar, algebraic formulas for the Wigner coefficients can 
be read off directly from their diagrammatic pattern 
calculus. 4 In more general cases an additional algorithm 
is needed to extract algebraic or numerical values of 
the Wigner coefficients from their formalism. In the 
case of SU(3) 2,3 this has been translated into a computer 
program, 7,8 so that both Wigner and Racah coefficients 
for S U(3) are now available in complete generality. 
Biedenharn and Louck advocate the view that there is a 
canonical structure for the U(N) Wigner-Racah algebra. 
This eliminates all free choices in the resolution of the 
multiplicity problem for the general Wigner coupling, 
so that all U(N) Wigner and Racah coefficients are 
uniquely defined. For arbitrary N, explicit algebraic 
constructions for Wigner couplings involving the most 
general multiplicity structure have so far been limited 
to matrix elements of the Wigner operators transform
ing as the U(N) irreducible representation [211 .. _10J 
= [21N

-
Z

] {equivalent to [10 ... 0-1] in SU(N)}. As a 
by-product of this calculation, Louck and Biedenharn1 
also give the U(N) Racah coefficients for the recoupling 
matrix for [jJ x [11. .. 10J x [10. 0 00] - [j] in elegantly 
compact form. Although Racah coefficients, being in
dependent of subgroup labels, have a simpler algebraic 
structure than the Wigner coefficients, general expres
sions for U(N) Racah coefficients have so far been 
limited to a few very special cases, usually cases in 
which the four Wigner couplings in the Racah recoupling 
transformation are all free of multiplicity such as when 
two or more of the irreducible representations are 
totally symmetric (Moshinsky and Chacon9 and 
Alisauskas, Jucys, and JucyslO). In the applications to 
physical problems Racah coefficients are often more 
useful than Wigner coefficients, and it is hoped that the 
work of Louck and Biedenharnl will be extended to more 
general cases. Since the algebraic construction for the 
most general U(N) Racah coefficients is complicated, 
it may be useful to search for new relations or sum 
rules for the U(N) Racah coefficients which have no 
analog for the simpler SU(2) Racah coefficients. 
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It is the purpose of this note to exhibit such a sum
mation relation. It has the form of the well-known 
orthogonality relations for the U(N) Racah coefficients, 
or of a composition of recoupling transformations, ex
cept that the summation over column indices (for fixed 
row index) is over multiplicity labels only, for fixed 
U(N) irreducible representation label within the column 
index. This relation is particularly Simple if the rep
resentations [P] and [j3] in the recoupling matrix for 
[flJ x [f2J X [j3] - [fJ are either "elementary," 
[11. .. 10 ... O]=[P], or totally symmetric, [kO .•. 0] 
= [k], or of the form [kk . •• kO J = [kN

-
I J. In this case the 

sum is completely independent of the multipliCity struc
ture and can hence be calculated by permutation group 
techniques. This sum arises naturallyll in applications 
to physical problems, since it is needed in the calcula
tion of squares of matrix elements of operators aver
aged over the states of irreducible representations of 
U(N), where these averages are needed in the study of 
spectroscopic problems using spectral distribution 
methods. ll,12 In Sec 0 2 the summation relation for U(N) 
Racah coefficients is related to the matrix element of a 
projection operator for the symmetric group. Section 3 
takes up the calculational tools needed to evaluate this 
matrix element, including a transformation to nonstan
dard representations of Sno The details of the calcula
tion are exhibited through some illustrative examples 
in Sec. 4. Finally, results are tabulated for all cases 
of the recoupling matrix for [f]x [j2]X [j3] - [f], where 
the U(N) irreducible representations [f2) are of the 
form [0'1] or [IN'2] or [2N ' 1], and [j3] is of the form 
[1] or [12] or [2], which are the U(N) irreducible repre
sentations needed to construct all one- and two-body 
operators through the coupling [j2]X [f3]. 

2. THE SUMMATION RELATION 

For present purposes it will be convenient to use a 
notation for the U(N) Racah coefficient which is a 
straightforward generalization of that for the angular 
momentum calculus for SU(2) and give the Racah coeffi
cient in unitary form, the U coefficient, which is given 
by the recoupling matrix 

U([f I ][f2][fJ[f3]; [j12Jp12 pl2, 3; [j23Jp23pl,23) 

= «([F] X [j2])[j12]p12 X [j3])[j]pI2 ,3 

X I ([f1] X ([j2] X [j3J)[f23]p23)[f]pl,23). (1) 

Here, the irreducible representation labels [fs] = [j~N] 
are given by the partition numbers f/N' i = 1, ... ,N, 
which specify the number of squares in the ith row of 
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the Young tableau describing the representation [r] of 
U(N). The multiplicity labels pSt are needed whenever 
the Wigner coupling of [Js] with [P] can yield a specific 
representation [Jst J with d-fold multiplicity, d> 1. 
Since the result of this investigation will involve a sum
mation over multiplicity labels only, it is convenient to 
use a separate symbol for the multiplicity label and 
avoid the more elegant notation of references, 1-6 even 
though the Biedenharn-Louck canonical structure has 
been adopted for the U(N) Wigner-Racah algebra. Note 
that the column index for the unitary transformation 
matrix is specified by both the irreducible representa
tion label [J23] and the multiplicity labels p23 and pI ,23; 

similarly for the row index. In the notation of Louck 
and Biedenharn, 1 the above U coefficient is the matrix 
element of the U(N) Racah invariant operator 

(2) 

connecting states of irreducible representation [jl] (on 
the right) to states [J] (on the left). Here, the labels 
rst include both the multiplicity labels pSt and the shift 
indices, t..1 = H:, which indicate how many of the 
squares of the Young tableau for [ft] have been added 
to the ith row of the tableau for [rJ to make the tableau 
for [fstJ. 

For recoupling transformations in which the rep
resentations [F] and [f3] are restricted to be "ele
mentary" [lk], totally symmetric [k], or of the form 
[kN-1

], only the multiplicity label pl,23 is needed. (The 
other Wigner couplings are free of multiplicity; when
ever a multiplicity label p is unnecessary it will be 
omitted.) In this case the sum 

(3) 

can be evaluated by permutation group techniques. Note 
that with [f2'] = [J2], [f3'] = [f3], and a summation over 
both pl,23 and [f23], the above would have become mere
ly one of the orthonormality relations for the U coeffi
cients. The above sum over p only, however, is a sim
pIe function of the irreducible representation labels 
[fl]'[j23], [f]; [F],[j3],[F'], [J3,]; [f12] and [flU]. It 
is this function which is to be evaluated in this 
investigation. 

To evaluate the sum of Eq. (3), it is convenient to 
introduce n-particle state vectors I [f]a ;rnrn_lrn_2' •. r) 
which are simultaneous base vectors for an irreducible 
representation of U(N) and of the standard Young
Yamanouchi representation13 of Sn (with n=L,iftN)' 
where a stands for a complete set of subgroup labels 
for U(N) (the Gel 'fand labels ftj with i '" j = 1 , ... ,N -1, 
could be used, for examplel

-
6
), and where rnrn_1 ••• r1 is 

a standard Yamanouchi symbol. 13 It will further be 
useful to transform to a nonstandard representation of 
Sn,14.15 in which the group of k particles labeled n, 
n - 1, ... ,n - k + 1 have a definite permutation sym
metry, e.g., [lk] or [k]. Such a state vector can then 
be expanded in terms of U(N) Wigner coefficients 
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where the U(N) Wigner coefficient, «(ti']a~'(tl]all (t]a)p, 
is the matrix element of the Wigner operator ( ), 
namely 

(5) 

in the notation of references. 1-6 Note that (tl] is assnmed 
to be of the form [Jk], [k], or [kN- 1], so that no multi
plicity label p is needed in the Wigner coefficient of 
Eq. (4). Note also that the representation (t{'] is deter
mined uniquely by the Yamanouchi symbols 
rn , ••• ,rn-k+l' (The tableau for (t{'] is obtained from the 
tableau for (t] by removing squares from rows 
r n' r "..1' •• , and r n-k+l') By repeating this process for a 
second group of k' particles, and expressing the product 
of k-particle and k' -particle representations [tJ and 
[ti] in terms of coupled U(N) representations [to] for the 
(k + k')-particle state, the n-particle state vector can be 
expanded as 

I [t]a; r(k, k' )[11 H/l J' •• > 

'" I [f]a; {rn ••. rn-k+lh/t I (rn-k• • ·r n-k-k'+I}[ /p r ".k-k'· . . r) 

=6 ~,61[t']a')I«(f{]x[{J)[{0]ao) 
a~'al " "ll/olao 

X ([{, 10" [{{]a ~ I (t{' la~')«(t{']a f'[{JeY 11 (tla) 

x (If{]a r[{l]a 1 I [(o]O'o) . (6) 

The sums over subgroup labels 0'1' af, af' for the pro
duct of three U(N) Wigner coefficients can be expressed 
more simply in terms of U(N) Racah coefficients by 

x (lfn O'7[fl] all [J ]0') ([fna ~[f1]O' 11 (fo]eY 0> 

=6([!']a'[fo]ao I [J]a)p 
p 

(7) 

Since the Wigner coupling [J' J x [fo] is in general not 
free of multiplicity, both u(N) Wigner and Racah coef
ficients are functions of the multiplicity label p, and the 
result involves a sum over this multiplicity label. 

To obtain the relation for the sum of Eq. (3), consider 
the matrix element of a projection operator, ylfol, 

([ fJa ;r' (k2, k~)[1 IIf'I' • ·1 ylfol I [fJa ;r(k1 ,kn [f HI' I' • 0 ) 

2 2 1 1 

with k2 + k~ = kl + k~, where ylfol is an operator, built 
from permutation operators for particles labeled 
n, n -1, ... , n - kl - ~ + 1, which projects the represen
tation with Young tableau (fo] out of an arbitrary (k 1 

+ k:l-particle state. By USing Eqs. (6) and (7) for both 
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state vectors, the matrix element of :0/01 can be ex
pressed as 

«(J]a;r'(k2,k~)[/2][/21 ... 1 y[/oll (J]a;r(kl,k~)[/l](/11"') 

=66«(J']a'(Jo]aol(J]a)p 
Q' Q o PP' 

x([f']a'[fo]aol [f]a)p' 

x U([!'](J:](J][fl]; [~'L_;[foLp) 

x U([!'](J;](J][f2]; (J;'L_; [foLp'), 

where we have used the property of the proj ection 
operator 

(8) 

([f~']a~'1 y[foll [f~]a~) =0[1 ](/'10[1 11/"1°",.",,, (9) 
00 00 00 

to eliminate sums over [fo']' From the orthonormality 
of the U(N) Wigner coefficients 

L «(J' ]o'(Jo]ao 1 (J]o)/(J']o '(Jo]oo' [f]o)p' = 0Pl>' (10) 
0:' 0:0 

we then obtain the desired summation relation 

Since the projection operator, y[/ol, serves only to 
proj ect the representation (Jo] out of an arbitrary (k l 

+ kO-particle state, its Sri subgroup character is com
pletely immaterial. It could be constructed according 
to the Young-Yamanouchi-Rutherfordls prescription; 
but it is usually much simpler to give it in symmetric 
or antisymmetric form 13 for some conveniently labeled 
tableau (not necessarily a standard labeling), since any 
normalized linear combination of y\'ol'S with different 
Sn subgroup labels i will serve the purpose. 

3. CALCULATIONAL TOOLS 

The matrix element of :0/0 1 can be related to the basic 
matrix element of the transpositions Pm-I,m in the stand
ard Young-Yamanouchi representation13 

«(J]; .. 'Ym = p, rm_l = q . .. 1 Pm-I,m 1 [f]; . . . rm = p, Y m-l = q . .. ) 

= 1/ 'Tpq ' 

«(J]; .. . r m = q, rm_l = p . .. 1 Pm-I,m' (J]; .. . rm = p, r m-l =q . •• ) 

=[1-1/-r;qP/2, (12) 

where 'Tpq is the "axial distance" between the squares 
labeled m and m -1 in the Young tableau, 

(13a) 

and ft") is the number of squares in row i of the m-par
ticle tableau left, after particles labeled n, n -1, ... , 
m + 1 have been removed from the original n-particle 
tableau of shape (J]. If the symbol r m is preceded by 
a(p) symbols with the label P and the symbol r m- l is 
preceded by a(q) symbols with the label q, 

'Tpq = !p - fq - P + q - a(p) + a(q) (13b) 

where f; now designates the number of squares in the 
ith row of the n-particle tableau, (J] (Ji;: fiN)' Note that 
'Tqp = - 'Tpq ' and that 'Tpp = + 1, since a(q) = a(p) + 1 in this 
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case. Note also that 'Tpq can be expressed in terms of 
differences of "partial hooks, "1-6 PiN = fIN - i + N. 

The transformation to nonstandard representations of 
Sn is particularly simple if the k particles to be singled 
out belong to the totally symmetric or antisymmetric 
representations of Sn' In this case the transformation 
coefficients have been given by Rorie. 15 For the totally 
symmetric case in which the k particles labeled 
n - m -1, '" ,n- m - k have been singled out 

=6P[~ A (1 + _1 )11/2 
P k!I<J:l 'T" 'J 

I } 

x 'rn' •. rn_mal ~ .. . l\rn-m- k-l . •. ), (14) 

where the sum is over the k! permutations p which per
mute the symbols aI' ... ,ak in both the state vector and 
the coefficient. Similarly, for the totally antisymmetric 
case 

=6P(-1)P+l [l.. A (1- _1 )] 1/2 
P k! I<i·l ~ 'T'I'} 

X 'rn" .rn_mal~·· ,akr..-m-k-l ... ) (15) 

with P = even (odd) for even (odd) permutations, p. 

It will also be useful to build state vectors antisym
metric (or symmetric) in one group of k particles, la
beled n - m -1, ... ,n - m - k,from vectors antisymme
tric (or symmetric) in the k -1 particles 
n - m -2, ... ,n - m - k through antisymmetrizers A (or 
symmetrizers S), with 

1 
A (n - m - 1 , ... , n - m - k) = -k t 6 p( - 1)p 

• p 

where the sum runs over the k! permutations P of par
ticles labeled n - m - 1 , ... ,n - m - k, and p = even (odd) 
for P=even (odd): 

A(n-m -1, ... ,n- m -k) 

X ,r" . •. rn_maJ~a3' .• aJ[lk-llr ..-",-k-l' •• r l ) 

= [! A (1 __ 1 )11/2 
k ;=2 'T'1'1 'J 

x 'rn' .• r "..m{al~' 0 • akh lklrr.-m-k-l' .. r l ). (16) 

The inverse transformation gives 

, .. • {al a2 • •• ak}[lkl' .. ) 

= t (_1)1+1 [!. A (1 __ 1 )] 1/2 
1=1 k i=l 'T, , 

i*1 i J 

X I .. 0 aj{a l • •• ai_lal +l ••. a"hlk-l j ••• ) (17) 

with analogous expressions for totally symmetric 
groups. Another useful relation involves the transposi
tion operator which interchanges particles labeled 
n - m - 1 and n - m - k in a state vector antisymmetric 
in particles labeled n - m - 2, ••. n - m - k: 

P n-m-l,n-"..k I· .. al{~a3' •• akhlk-ll' •. ) 
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+~(-1)' T4

1
4 [J~2(1-7"a1a)(1- T4

1}4,)J
1
/

2 

1, J~' 1 J 

X I .. . {a1 •• • aH a l+1 , , ,akrl1k-1] a, .. . ). (lBa) 

In the special case a l = ll.z the above collapses to 

P n-m-1,n-m-k' .•• al{alaS' .. akhlk-l] ... ) 

= I· .. {alaS·· .aJIlk-l]al .· .). (lBb) 

The transformation to nonstandard representations of 
S is complicated in the case where the k-particle rep
r~sentations of S are other than one-dimensional. For 
a group of (N-1)k particles of symmetry [kk ... kO] 
'" [kN - l ], however, it is sufficient to construct a single 
(N -l)k-particle state of symmetry [kN - 1], since the 
properties of SU(N) insure that the Wigner coupling [jJ 
x [kN-IJ is free of multiplicity. It will be convenient to 
choose this single state to transform according to the 
irreducible representation [~-1 J of Sn and to be in nor
mal antisymmetric form in k distinct groups of (N -1) 
particles each. (We shall use the notation [kNot la. Note 
that this state is a complicated linear combination of 
the Young-Yamanouchi base vectors for [kN-l J. ) 

An eN -l)-particle state of symmetry [I N - l ] in which 
the N -1 Yamanouchi symbols include the numbers 1 
through N, with the exception of the specific number i, 
will be denoted by {i]IlN-l] : 

I ... {i}11N- l ] .• ')'" I·· .{12 .. . i-l,i+l" .. N}11N-1] .. ·> 
In this notation the state [kN -

l Ja can be expanded as 

I [f) ... {al a2 •• • (lk}CkN-1)a' .• ) 

=~P[k~ '<~=l (1 + T,la )] 1/2 
P t j 

x 1ft) .•• {aJI1N- l ]{aJI1N-1] ... {akh1N-1] .. . ), (19) 

where the sum is over the k! permutations P which per
mute the symbols a,. The coefficients follow from Eq. 
(14) and from conjugation properties under SU(N). The 
state conjugate to [jJ transforms according to SU(N) 
irreducible representation [j*) with fi* = f1 - fN+l-/' If the 
state [j(P)J is obtained by removing N -1 squares from 
the tableau for (f1, one from each but the pth row, then 
the irreducible representation conjugate to [jG)J is 
specified by the tableau (f* (N + 1 - p) J which is obtained 
from (f* 1 by removing one square from row N + 1 - P of 
[f*1. Thus the function T.. in Eq. (19) is related to 
axial distances in [j) in th'eJfollowing way: 

T '" Tlf] - r. f *] 
III"} lI,a} - N+l-a,.N+l-a} 

= f:+l-a, - f:.l-aj + (N + 1 - aj ) - (N + 1 - a,) 

= Ul - fa ) - Ul - fa )+ a, - aJ = fa - flJ, + a, - a} 
, j J 

= T • (20) aJaj 

In particular, therefore, 

I [fJr n' •• rn- m {p(j} 12N - 1] rn- m- 2N+ l' •• r l ) a 

= [~(1 + :<JJ 1/2, [f]rn" .rn_m{12 ... P -l,p + 1, 
.• • NhlN-1]{12 .•. q -1, q + 1, ... N}11N-l] ••• ) 

+ a (1- T~)r/21 (f]rn , .. rn_m{12 .. • q - 1, q + 1, 
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(21) 

with 

T.~ =. f. - /p - q + P - a(q) + a(p) 

for p *' q, where a(q) and a(p) are the number of occur
rences of the row numbers q and p in the Yamanouchi 
symbols rn , ••• rn_m while T •• '" + 1. 

In addition to the above results for nonstandard repre
sentations of Sn' the only other calculational tool needed 
is the value of the simple sum 

6 ",til (1 __ 1 )=.m. 
m j.l J.1 Tajaj 

j~' 

(22) 

The proof follows (see Ref. 1): Let Ta a = (XI - xj ). Then 
x, are real numbers such that (x, - x}fJ 0, for U j and 
~m can be expressed as a contour integral in the com
plex z plane 

L =- _1 fn (1- _l_)dZ' 
m 27ri /01 (z - Xj) 

where the contour encloses the m Simple poles 
xl>'" ,xm ' After expanding the product in the integrand, 
only the m terms of the form l/(z -XI) give a nonzero 
contribution to the contour integral. 

4. ILLUSTRATIVE EXAMPLES 

The methods used to evaluate the matrix elements of 
the projection operator ylfol of Eq. (11) will be illus
trated with two examples, Consider first the Simplest 
(and trivial) case: [f1]=ft2]=[1]; (f{)=[t;)=[lN-1]; [10] 
= [21 N -

2
]. This is a trivial example since the value of 

the sum of Eq. (3) follows in this case from the ortho
normality relation for the U coefficients and the values 
for the U coefficients with [jo) = (1 N] '" [0 ... 0 J, which are 
given by simple dimension factors, see Ref. 1 and Eq. 
(43) below. Nevertheless, the example illustrates the 
techniques to be used in more complicated cases. In 
this example it is most convenient to choose the pro
jection operator ylfol in normal antisymmetric form 

[~lN-2] N ( 1 1) y =. An- ,,,.,n-N+ 

xt(l +Pn.n_1)A(n-l, ... ,n-N+l) 

with a normalization factor N to be determined. In this 
case 

(al{a2 aS ' •• aNJrlN-11' •• 1 yl21N-2) I a1{aaaS ' •• aNh IN-11' •. ) 

=. W{ 1 + (a1{a2aS' •• aN}IlN-11 ' 0 • 1 

XPn.n-11 a1{aaa3 ••• aNh1N-11' .. )} 

=W{l+_l t [_1 fi (1 __ 1 )~} , 
(N -1) 1=2 Tala, ~;~ \" TaiaJ ~ 

(23) 

where Eq. (17) has been used to uncouple the particle 
numbered n -1 from the antisymmetric group, together 
with the basic matrix element (12). By rewriting 
l/T = (1-1/T. ) -1, the sum in Eq. (23) becomes alai atal 

[ t if (1 -_1 ) _ t fi (1 __ 1 )] (24) 
"2~;: Tala} 1=2 i=2 Tala J ' 

By adding and subtracting nf'2(1- 1/Ta1aj ) to the first 
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term, both sums in (24) can be evaluated with the iden
tity (22) to give 

so that 

(a l la 2 ••• aN}UN-IJ 1 y!21
N

-2
j! al{a2•• .aN}'lN-lj"') 

=6 [J2([j'][1N-l][/][1]j[/"] == [j(a)] j[21No2] p) p 1 __ _ 

- Ii. ~ {1 _ .!. ff (1- _1_)} (25) 
- 2 (N -1) N 1=2 TalaJ ' 

The normalization factor N is most readily determined 
by choosing the labels a l such that the Racah recoupling 
transformation collapses to a trivial one-dimensional 
unitary transformation. In the above example, with 
ll:! ==al == 1, a3a4 ... aN==23 ... N-1, and [j]=[21N-2], the 
representation [1'] is the scalar representation (f'] 
=[0 ... 0], so that the square of the single surviving 
U coefficient in the sum of Eq. (25) has the value unity. 
In this case, with fl_ = a l , 'T == + 1, and Eq. (25) is re-

~. ala2 
duced to 1 ==NN/2(N -0. With this value for N, arbi-
trary [j], and al a2 • •• aN = any permutation of 12 ... N, 
Eq. (25) yields 

6 p [J2([/][1 N-l][jJ[1] j(f(al) L_;[21 N-2L~ 

={1-.!.rr (1 __ 1 )}, 
Nl=2 Talaj 

(26) 

where [j(a)] is the representation with a tableau ob
tained by removing one square from row a1 of the tab
leau for [fl. Note that (f']=(f(12 ... N)] (removal of one 
square from each row of [/D, is equivalent to (f] in 
SU(N). 

As a second example consider the case (fl] = (f2] 
= [2], [ji] = [I;] = [2N- l ],[fo] = [21 N-2]. With particles 
numbered n - 2 through n - 2N + 1 already prepared with 
a permutation symmetry [2N-

1
]" in the state vectors, it 

will now be sufficient to choose a projection operator 
ylfoj of the form 

N A (n - N - 1, ... , n - 2N + 1)A (n - 1, ... , n - N)S (n, n - 2, 

n - N - 1)A(n - 1, ... , n - N)A(n - N - 1, .•. , n - 2N + 1) 

(27) 

corresponding to the labeled tableau of Fig. 1. The 
symmetrizer 

S=i(1 +Pn,n .. H(1 +P,.,n-N-l +Pn-2.n_N_IH(1 +Pn•n-2) 

(28) 

when sandwiched in between the antisymmetrizers of 
(27) can be written in the form 

(29) 

The antisymmetrizers, when acting on a state vector of 
symmetryl{a1aJ'2j{alaJ[2N-lj' .. ) [see Eq. (21)], give 

A(n-1, ... ,n-N)A(n-N-1, ... , n-2N+1) 

1 {a1aJ[2j{ii1 aJ[2N-l j' .. ) 

- !. (1 __ 1 ) [.!. (1 _ 1 } ~ (1 __ 1 )] 1/2 
- 2 T«la2 N (Ta1a2 + OJ i=3 Tala} 

X 1 a2{a1ll:!· •. aNh INI{a1a3 • •• aN}UN-lj' .. ) 
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_ ! (1 + ~) [.!. (1- 1 ) ~ (1- _1 )] l/2 
2 Ta1a2 N T "2"1 + 1 i=3 T a2"j 

X 1 a1{a1a2 • •• aNhlN j{a2a3 • .. aN}[lN-l j . .. ), (30) 

where Eq. (16) has been used, after l{a1aJI2j"') is ex
panded through Eq. (14). It is thus sufficient to evaluate 
the symmetrizer S, of Eq. (29), between states of the 
type latialll:!' .. aNhINj {b1b2 .• . bN_JIIN-lj" .), where 

<a~{a~~ .•. a~hlNI{b~b~ ... b~_lhlN-ljl 

XS I a1{a1ll:!· .. aNhlNj{bl b2• .• bN_l}[IN-l,) 

={(.··I (1 +P".n-l)I·.·) 

+ i(. .. 1 (1 + Pn.rr-l)P rr- l ,n-NPn-N.n-N-lPn-l .n-N(1 

+ P"."-l) / .•. ). 

Now, uSing Eqs. (17) and (12), we have 

(1 + Pn,n-l) 1 al{alll:!· •. aN}IIN j' •• ) 

==2[~i~2(1- (Taa1_1»)]1/2Ialal{lilhlN-lI''') 
1 J 

+t(-1)I+l [2 (Talal~l) ff (1 __ 1_)11/2 
1=2 N (Ta a 1) J=2 T. a. ~ 

1 I i~1 1 J 

X l{alaih21{alhlN-lj' .. ) 

while, using Eq. (18), 

Pn-l ."-N(1 + Pn.7t"l) 1 aJalll:!··· aN}[ INj' •. ) 

(31) 

(32) 

==[~E (1+ (Ta.
1

_ 1))] 1/2 {l+E (1- Tala )} 
1 j 1 i 

Xl al{liJ[lN-l1al ... ) 

+ t(-l)l+l[.!. (1- 1 } 8 (1 + _1 )] 1/2 
1=2 N (To 0 - I)} }=2 Ta a 

1 1 }~I 1 j 

Xl al{iilhlN-ljal"') 

+ t (_1)1+1 [.!. n (1 __ 1 )~ 1/2 
1=2 N j=l Ta a 'J 

UI 11 

X lal{li1h IN-l j a1 • •• ) (33) 

where repeated use has been made of the identity (22) to 
simplify the coefficients of the three types of terms. 

n-2 n-N-1 n 

n-3 n-N-2 

n-4 n-N-3 FIG. 1. 

I · · • I · · • I • • • 
n-N n-2N+t 

n-t 
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Next, with the shorthand notation Ta' = (Ta a - 1) = 
) 

1al 1 i 
-T ,=-(T +1, 

alaI aia1 

1 = -{2N - (N -1)} 
N 

where the sums have again been evaluated with the 
identity (22). On the other hand, 

(34) 

(~{a1' .. aNh1N, • .• 1 (1 + Pn,n-) 1 a1{a1 • •• ll,v}I1N, .•• ) = 00 
(35) 

Finally, from (33), uSing (17) to uncouple the particle 
labeled n - N -1, we have 

(a1{a 1· .. aN}I1N,{b1· .. bN_JI1N-1, I (1 + Pn,n-1)Pn-1,,,..NPn-N ,,...N-1 

X Pn-1,n-N(1 + Pn,n-1) I a1{a1 • •. aN} [ 1N,{bl' •. bN-lh IN-I, 

1 ~lN-l ( 1) - un 1--
- N(N -1) ,=1 j.l Tb b. F(b,) 

j~' I J 

(36) 

with 

F(bl )= (T b

1
_ 1){N+2+E (1+ (Taa

1 
-1»)} 

a1 I I J 

+t_1 (1+ 1, )rr(l+-l) ,.2 Talb, (Taia1 -1) ~~ Tala, 

_ (N + 2) + 1 _ (1 _ 1 ) fi (1 __ 1_) 
- (Ta b -1) (Ta &/ -1) j.2 Ta bl ~ 

1 , 1 j (37) 

where F(b,) has again been Simplified by the use of the 
identity (22). Finally, the very last product in (37) must 
always be zero, since T. b = 2 if b, = a l (in this case b, 
is preceded by two a1 's ih'the state vector); and Ta b, 

= + 1 if bl = af for any j;:. 2 (b, is now preceded by ~me 
aj ), Hence 

F(b,) = {1 + (:' + :)1)} 
alb, 

and in this form the sum over l in (36) can be per
formed to give 

= {(2N+l)-(N+2)Nf(l- ( I_I»)}' 
/_1 Ta1b , 

Combining (31), (34), and (38), we have 

(a1{a1· , . aN}I1N){b1 • •• bN_J[IN-1) I 
xS 1 a1{a1· •. aN}I1N,{b1· •. bN_J[lN-1,) 
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- - -- 1 - - n 1 - ..,.-----:-r 1 (N + 2) { 1 N-l ( I)} 
-6 (N-l) N'=l (Ta1&,-I)' 

(39) 

Two cases must be considered: First, if some bJ is 
equal to al , then this b j is preceded by two aI's, and 
T b = + 2 for this j, so that the product in Eq. (39) is 
z~~b. On the other hand, ifbl*au i=l, •.• ,N-l, then 
every bj is preceded by a single aj , and Talbj = (Tala/ 

+ 1). In the two cases, Eq. (39) gives 

(a{12 ... .N}[lNMh1N-1, ... 1 

XSI a{12 ... N}[lN,{iih IN-I, ... ) 

_!.(N+2) {1-.!. IT (1_1-)} 
- 6 (N-1) N 1=1 Tal 

Ita 

(40a) 

where a is any number from 1 to N, while, with a * b, 

(a{12 ... .N}[lN,{b}'!lN-l) ... 1 

xS 1 a{12 ... N}[lN,{b}I1N-1, ... ) 

1 (N+ 2) 
= '6 (N -1) . 

USing similar techniques, we have 

(b{12 • •• .N}IlN){5h IN-I) / S / a{12 ... .N}[IN,{iihlN-1, . .' .) 

(40b) 

= 6%;:~) [(1- ~) &1 (1-T~J ~-T~)J 1/2 
a I~"b 

(40c) 

Before the final result for the Racah summation rela
tion can be written down, we need to evaluate the nor
malization factor N of Eq. (27). By choosing [j] 
=[32 ... 21]' so that [j'J==[O .. . 0], the matrix element 
of yf 21N-2

, again has the value unity. Thu s 

([32N
-
21J ;{1Nh2,{NN}[2N - 1, / 

x y£21N-2, / [32N- 21] ;{1.N}[2){NNh~-11> 

= 1 =N !. (1 + ~) .! ~ _ 1 \ Nit (1 _ ~) 
2 TIN N V (TNl -1»)i.2 TNi 

X(1{12 .. • NhIN){N}[IN-1,1 

xS /1{12 ... Nh1N,{N}[lN-I,), (41) 

with T1N =N+1=-TN1 , TNi =-(N-i+1), fori;:.2, and 
the matrix element of S given by (N + 2)/ 6(N -1). Thus 

1-,y (N+ 2) (N+2) 
- 2 2N 6(&-1) 

Finally, with this value of N, combining Eqs. (30), 
(40a) , and (40c), the diagonal matrix element of 
yI2l

N
-
2

, leads to the summation relation 

(42) 

where [j"] = [j(ab)J is the representation with a table
au obtained by removing one square each from row a 
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and b of the tableau for [f]. Note that in this particular 
example [J'] is again equivalent to [f] in SU(N), since 
[J'] is obtained from [J] by removing two squares from 
every row of the tableau for [f]. 

5. RESULTS 

The summation relation (11) arises naturally in ap
plications to physical problems ll through the squares of 
matrix elements of operators, averaged over the states 
of an irreducible representation of SU(N). [ The reader 
is directed to Ref. 11 which shows in detail how the 
SU(N) Racah sum, Eq. (11), arises in averaging the 
square of an operator or the product of two operators 
over the states of an irreducible representation of SU(N). 
Reference 11 also gives a number of applications to nu
clear spectroscopic problems using the methods of 
spectral distributions.] The operators of greatest in
terest are one- and two-body operators for which the 
representations [J{] and [Jl] in the Racah recoupling 
matrix for [j']x [j_{]x [jl] - [j] are of the type un 
=[1N-lJ, [1 N-2}, or [2N-1 ]; [Jl]=[1}, [P], or [2]. Since 
[f{] is then a representation conjugate to a one- or two
particle representation, it will be natural to denote it 
by [J{*}' with [1 N-2] = [1 2* J, for example. To eliminate 
trivial dimensional factors, it will also be useful to 
tabulate results in the form 

~Q U([f'][J{*][J][Jl); [J{'] ;[1] p) 
U([f'JU{*][f']U{]; U{'L_;[o _J 

x U([J'][Jr][J][J2]; [Ja'] ;[fp] p) 
U([f'][j~*][f']Ua1;[N'L_;[o] , 

(11') 

where the U coefficients in the denominator, with [Jp] 
=[0 ... O]=[OJ, equivalent to [1N] or [2N] in SU(N) are 
given by trivial dimensional factors. By evaluating 
these coefficients by the techniques outlined in Secs. 3 
and 4, the summation relation in the form of Eq. (11') 
also becomes as much as possible independent of spe
cific phase conventions for the U(N) Wigner-Racah 
algebra. It will be useful to express the U coefficients 
with [Jp] = [0] as functions of the axial distances in [J]. 
The needed coefficients are 

U([f][1 N-1 ][J][1]; [j(a»); [0]) 

= (_l}d+l [.!. ~ (1-~ )~ 1/2, 
N I", Tal J 

U([J][1 N-2][J][P]; [f(ab)];[O]) 

= (_l)lI+b [ 2 f1 (1- ~)(1- ~)] 1/2 
N(N -1) I~a T 'fbi ' 

lOb al 

U([j][2N-l][f][2]; [f(aa)]; [0]) 

[ 
2 if ( 2 )] 1/2 

= N(N+1) I*a 1- Tal ' 

U([f][2J+ol][J][2]; [f(ab)]; [0]) 

= (_l}a+b [N(;+l) I~ (1-!-) (1- T:
I 
)] 1/2, 

l*b al 

(43) 

where [f(ab)J is 'again specified by a tableau obtained 
by removing one square each from row a and b of the 
tableau for [fJ, with a and b any of the numbers from 
1 to N. The possible irreducible representations [fp] 
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for one- and two-body operators, can be read off from 
the direct products [J{*Jx[jlJ=~[fpJ: 

1. [1N-l]x[1]=[OJ+[21N-2], 

2. [1 N-2] x [PJ = [0 J + [21 N-2J + [221 N-4], 

3. [2N- l ] x [2] = [0] + [21 N-2J + [42N-2), (44) 

4. [2N-1 ] X [12] = [21 N-2J + [322N-3] , 

5. [1 N-2] x [2J = [21 N-2] + [31 N-3J. 

Representations such as Lf] = [J(~a2a3 •.. aN_2)] or 
Lf] = [j(ai~~ • . '~-1)] can be reached from [f] by only 
a single operator y!fol. E. go, [jPJ = [31N-1] if [j{*][fl] 
= [1N-2][2], or [jp] = [42N-2] if [J{*J[JJ = [2N-1][2], for 
[/]= [f(aia2ago 0 oaN_2 )]o {[I] is the SU(N) representation 
described by the tableau obtained by removing three 
squares from row at and one each from rows a2 through 
a N-2 from the tableau for [f], where the al are any of 
the numbers from 1 through N; note that 
V(ara2aS' •• a N-2)] is equivalent to [f(ata~a~a~ • •• a~2a N-ta N) 
In SU(N).} For such representations the summation re
lation (11) is trivial, since the Racah recoupling matrix 
becomes one-dimensional. The only nontrivial cases 
therefore involve irreducible representations: 

A. [j'] =[f(a~a2' .• a N-t)] 

={[f(ara~ ••• a~_taN)] in SU(N)} 

and 

B. [J']=[f] 

=([f(ata2' .. aN)] = [f(aia~ • •. a~)] in SU(N)}. 

Results for case A have been tabulated in Ref. 11. Re
sults for case B (diagonal matrix elements) are collected 
in Table I. The summation relation, in the form (11') 
with [j{* ][jd = [j~* ][j2] for the five types of one- and ' 
two-body operators enumerated in Eq. (44) are tabulated 
as cases 1-9. With [fo] = [21 N-

2
], it is possible to have 

[f{*][fd"* [f{*][f2]' There are ten such possibilities for 
one:-: and two- body operators which are tabulated as 
cases 10-19 in Table 10 

T ABLE I. The sums 

I; U([jll/;*lI/H/d;[/f'][/o]p) x U([j][/f*][fll/zHf2'lI/o]p) 
p U( [JH/; * ][/lI/ll ; [I; ,][ 0]) U( [.t1 [If * HI] [jf]; [jf' II 0]) 

where 

[[I'H/2'] 

[j(a) ][/(a)] 

[[(a)][/(b) ] 

[jl']Lt2'] 

[/(ab )][/(ab)] 

[[(ac)][/(ab) ] 

[[(cd)][/(ab) ] 

[/1'][12'] 

{N (Tab~hl)I1a -I} 
-1 
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Table I (eantinued) 

[j(ab)][j(ab») 

[j(ae»)[j(ab») 

[j(ed) )[j(ab») 

[j(ab) ] [j(a b)] 

[j(aa) )[j(aa) I 

[j(bb)] 
[j(aa)1 or [jibe)] 

[j(aa) I [j(ab) I 

[j(ab )][j(ae) I 

[j(ab) )[j(ed) I 

[j(ab) Hj(ab)] 

[j(aa)J[j(aa) ] 

[j(bb) I 
[j(aa)J or [j(be)1 

[j(aa)][j(ab) I 

[j(ab)][j(ac)1 

[j(ab )][j(ed) I 

[fI'] L/2') 

[j(ab )][j(ab)] 

[j(ae) ][j(ab)] 

[j(ed)J[j(ab) ] 

[jt][f{'1 

[j(ab)J[j(ab)J 

[j(ac)J[j(ab)] 

[r(cd)][r(ab)] 

N 
(N-2) 

N(N+1)}(Toh-1)2 ~+ (Toh+ 1 )2 ~-..±} 
2(N+2,)lTab (Tab+ 1) fh Tab (Tab- 1) Da N 

2N(N+l){~ 1 I} 
(N + 2) ( Tab - 1) D. - N 

2(N+l) 
- (N+2) 

N(N + 1){( Toh + 1) ~ _ J.} 
(N+ 2) (Tab -1) D. N 

N(N + 1) ftT"h + 1) (1 + ~)~ _ ..±} 
2(N+2)1(Tab- 1) Too Da N 

2(N+l) 
- (N+2) 

N 
(N+2) 

~{1- (N+ I)(T"h+ I)} 
(N+2) D.(Tab-1) 

~ {1- (N+ 1) (Tah+ I)(Toc + I)} 
(N+2) 2 (Tab-1)T",na 

N 
(N+2) 

o 

N(N + l)i 1 [( 1 J ( 1) j --- 1-- 1-- Da+ 1+- ITb 
2ITaDb N Tab Tab 

_ (N+l) [(Toh+ 1 ) (1- 1 )J1I 2 ~ 
2 (Tab-I) Tfc ITa 

o 
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[j(ab )][j(ab) I 

[j(ac) ][j(ab) I 

[jkd)J[j(ab) I 

[jf/J(jf') 

[j(ab )][j(a b) I 

[j(ac) Hj(ab)1 

[j(ed)][j(ab) I 

[jf'][.t2'1 

(f(a)J[j(ab) I 

[j(a) I (f(be) I 

(ff'J(jf'l 

[j(a) ][j(aa) I 

[j(a) I (f(ab) I 

(f(bb) I 
(f(a)] or [j(bC)1 

(fl'][.t2') 

(f(a)][j(ab) I 

(f(a)][j(bc) ) 

(f(a) I (f(ab) I 

(f(a)][j(be) I 

(ff'][.t2'] 

(f(ab)][j(ab») 

(f(a b)][j(a c) I 

(f(ab )[j(aa) I 

[j(ec) I 
[j(ab)1 or (f(ed)1 

2155 

o 

N(N - 1) { 1 [( 1 ) ( 1 ) J} --- 1-- 1-- Da+ 1+- Db 
2DaDa N Tab Tab 

10. (ff*Hjl) = [IN-1)[11; [jf*Hj2) = [IN-2][121; 

(fol = [21N-21 

Nr---E..=.D 1/2{~ _~} 
[2(N - 2)J ITa N 

_[2(N-1)1 1/2 

(N-2)] 

11. (ff*Hjll= [IN-1J(11; (ff*][j21= [2N-1][21; 

(fol = [21 N-21 

12. (ff*][jll= [IN-1][11; [jf*)(f21 

= [2N- 1 ][121; (fol'" [21N-21 

_[N(N+ 1) (Tah +l)]t/2 ~ 
2 (Tab -1)J ITa 

o 
13. (ff*][jl1 = [IN-1 ][11; [j2*][j21 

= [I N-2](2); [fol = [21N- 21 

[
N(N-1) (Tah+1)JI/2 ~ 

2 (Tab-I) ITa 

o 
14. [jf*][jl) = [IN-2][121; [j2*][j21 

= [2N-1 ][2]; (fol = [21N-21 
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Table I (continued) 

[ff'][/2'1 15. [ff *][ft I = [IN- 2)[12]; [f2*)[/21 

= [2N- l )[12]; [fol = [21N- 2] 

[f(ab)][f(ab)1 .![NW+1)(N-1) (1- 1)J1/2 -.!... _-.!...} 
2 W - 2) ;r,; Db Da 

[f(ab)][/(ac)] _.![NW+1)W-1)~_ 1)T/2-.!... 
2 (N - 2) r.;; Da 

[/(ab )][/(cd) I 0 

[f1'][frl 16. [ff*)[/I] = [IN- 2)[12]; Lf2*H/2] 

= [IN- 2)[2]; [/0] = [21N-2] 

[f(ab )][/(ab)] -~[~(1-~ )r2~l--.!...} 2 (N - 2) rab Db Da 

[ ( 1 )T'2 1 [/(ab)] [f(ac)] 
W-1) N - -
-2- (N- 2) 1- ~ Da 

00 

[f(ab )][/(cd)] 0 

[ff'][/r] 17. [.fj*][/I] = [2N- l ][2]; [f{*H/2] =[2N- l )[12]; 

[fo] = [21N- 2] 

[f(ab )](f(ab) I W+l)~ N ~ 1)T2{<Tab +l) 1 
-2- (N+2) -~ ('Tab-I) D. 

(T.h-l) 1 } 
- (Tab+ 1) Db 

[f(aa)][/(ab) I ~ N (T +lW/21 
W+l) (N+2)~ D. 

[/(ac»)[/(flb)1 W+l)~~ (T.h+l~1/2(1+~)-.!... 
2 W+2) (Tab-I) Too na 

*Supported by U. S. National Science Foundation. 
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(1970). 
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3L. C. Biedenharn and J. D. Louck, J. Math. Phys. 13, 1985 
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4L. C. Biedenharn and J. D. Louck, Commun. Math. Phys. 8, 
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Table I (continued) 

[f(cc)) [f(ab) I 
or [/(cd)] 

0 

[fI')[/2'] 18 . [ff*)[/I] = [2N- l )[2]; [/2*)[/21 

= [IN- 2][2]; [/0] = [21N-21 

[f(ab )][/(ab)] .! NW+1)W-1)(1_ 1 )T/tTah-1)-.!... 
2 W+2) ~ (Tab + 1) Db 

-~-.!...} (Tab -1)Da 

[j(aa)][/(ab) ] _[NW+l)W-1) (Toh+l)T/2-.!... 
W+2) (Tab-I) D. 

[f(ac )][/(ab)] _.!rW +l)W-l) (T.h+l)r /2 

2 W+2) (Tab-I) 

X 1+--( 1) l' 
Toe Da 

{j(cc)] fj(ab)] 
or [l!cd)] 

0 

[f1'][!2'1 19. [ff* )[/1] = [2N- l H12]; [/2*)[hl 

= [IN -2)[21; [fol = [21N- 21 

[f(ab )][/(ab)] -.![(N+l)(N-l) 11 /2{(1+ ~-.!... 
2 T Da 

+ (1- T~)~} 
[/(ac)][/(ab) I - .!~N+ I)W-1) ~(1- 1)J'2-.!... 

2 (Tab-I)?';; Da 

[f(cd)][/(ab) I 0 

SM. Moshinsky and E. Chacon, in Spectroscopic and Group 
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Backlund transformations for certain nonlinear evolution 
equations 
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United Aircraft Research Laboratories. East Hartford. Connecticut 06108 
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Backlund transformations associated with the Korteweg-deVries (KdV). modified KdV, and nonlinear 
Schrodinger equations are derived by a method due to Clairin. Also, a Backlund transformation 
relating the KdV and modified KdV equations is obtained by the same technique. 

1. INTRODUCTION 

A number of nonlinear evolution equations such as 
the Korteweg-deVries (hereafter abbreviated KdV) 
equation, modified KdV equation, nonlinear Schrodinger 
equation, and sine-Gordon equation are known to share 
many remarkable properties. 1 Some understanding of 
their similarities has recently emerged with the dis
covery that these equations are members of a class of 
equations that can be solved by an inverse procedure. 2 

Furthermore, it has been noted3 that the pair of linear 
equations that are introduced in the course of effecting 
the solution by the inverse method are transformable to 
the B~cklund transformations that are now known to be 
associated with certain of the evolution equations. Con
versely, the Backlund transformations for the above
mentioned evolution equations each contain an equation 
with Riccati type nonlinearity. If one refrains from 
transforming these Riccati equations to second-order 
linear equations and follows the alternate procedure of 
replacing them by a pair of linear first-order equations, 
one finds that the resultant equations are of the type 
first introduced by Zakharov and Shabat4 in their appli
cation of the inverse method to the nonlinear Schrodinger 
equation. It is the relevance of such linear equations to 
a number of other nonlinear evolution equations that has 
since been pointed out by Ablowitz et al. 2 

In the present paper it is shown that the relatively 
archaic notion of Backlund transformations5 is a useful 
intermediate step in analyzing the currently popular 
nonlinear evolution equations and should be useful in 
developing an understanding of equations to arise in the 
future. 

The derivation of the Backlund transformation also 
shows quite incidentally why modified KdV equations 
of the form uy + u"ux + uxxx = 0 with n > 2 can be expected 
to lie beyond the class of equations that admit of 
Backlund transformations of Riccati type with their as
sociated linear eigenvalue problem and well-known 
spectral theory. The lack of soliton behavior exhibited 
by numerical solutions of these equations is undoubtedly 
another manifestation of this fact. Nonlinear partial 
differential equations with Backlund transformations that 
are beyond Riccati type in their nonlinear character can 
presumably be expected to yield to a corresponding ana
lysis whenever a spectral theory can be associated with 
the relevant transformation equations. 

Backlund transformations arose long ago in the study 
of surfaces in classical differential geometry. 6 Since 
this topic has been out of fashion for some time, a brief 
summary of the significance of the term Backlund trans-
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formation, and in particular the distinction between a 
Backlund transformation and a contact transformation, 
is perhaps in order. 

Consider the two sets of variables related by 

P = f(x', y', z',p', q\ 

q = cp(x', y', z',P', q') 

(1.1a) 

(1.1b) 

with x = x', y = y', (The notation p = az/ax and q = az/ay 
will be employed throughout the following development 
with a similar notation for the primed variables. The 
second derivatives introduced in the sequel will be de
noted by r=a2z/ax2, s=a2z/axay, and t=a2z/ay2.) An 
explicit dependence upon z could be included in the func
tions f and cp (and indeed will be required in applications 
of the transformation theory present"d in the body of this 
paper) but is unnecessary for present considerations. 

The integrability condition for z requires dp / dy = dq / 
dx. This may be written as 

n=fy· - CPx' + fz.q' - CPe'P'+ (fp. - CP •• ) s' + f •• t' + cpp.r'= 0, 

(1. 2) 

where subscripts indicate partial differention with re
spect to the indicated variable. The integrability re
quirement may be satisfied in either of two ways: either 
identically, in which case fp. - <P.' = f •• = CPp' = 0 and 

(1. 3) 

or, since n= 0 is actually a second-order equation of 
Monge-Ampere form, it may be satisfied by virtue of 
the fact that z I is a solution of this second-order equa
tion. In the former case the transformation is a contact 
transformation while in the latter case it is a Backlund 
transformation. The reduction of the former case to 
the canonical form for a contact transformation is pre
sented in detail by Forsyth. 7 The fact that the Monge
Ampere equation that arises in the latter case is not of 
the most general form, so that not all such equations 
can be expected to have Backlund transformations as
sociated with them, may also be shown. 7 Needless to 
say, pairs of transformation equations that contain 
derivatives higher than the first may satisfy the inte
grability condition provided z' satisfies an appropriate 
higher order equation. Much of the following analysis 
will be addressed to the transformation of third-order 
equations. A straightforward extension of Eqs. (1) to 
include appropriate higher derivatives is therefore 
employed. 

Liouville's equation s = e" provides a simple example 
of an equation for which the general solution may be 
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2158 G. L. Lamb Jr.: Backlund transformations 

obtained quite easily by means of a B~cklund transfor
mation. This equation has associated with it the 
Backlund transformation 

p =p' - a exp[-Hz + z')], 

q = - q' - 2a-1 exp[t(z - z')], a= const. 

(1. 4a) 

(l.4b) 

The integrability condition for z is satisfied if s = e 
while the integrability condition for z' is satisfied if 
s'=O. Also, elimination of z/between Eqs. (1.4) shows 
that z satisfies Liouville's equation while elimination of 
z shows that z 1 satisfies s I = O. When the general solu
tion of this latter equation is inserted into Eqs. (1.4), 
the solutions of the resulting first-order equations 
readily yield the general solution of Liouville's equation. 

The sine-Gordon equation, which in characteristic 
coordinates may be written 

s=sinz, 

has associated with the Backlund transformation, 

t(p - p~ = a sin[t(z + Zl)], 

t(q + q') = a-1 sin[t(z - z ')], 

(1. 5) 

(1. 6a) 

(1. 6b) 

where a is an arbitrary constant. In this instance, how
ever, z and z I both satisfy an equation of the form of 
Eq. (1. 5). Although Eqs. (1. 6) do not therefore lead to 
a simpler equation for which the general solution is 
known, they have been found useful. They lead to a so
called "theorem of per mutability" by means of which 
four particular solutions of Eq. (1. 5) are interrelated. 
This result enables one to obtain an infinite sequence 
of particular solutions to the sine-Gordon equation 
without additional use of quadrature. These particular 
solutions have been found useful in the many physical 
applications of Eq. (1. 5). Only recently,8 the pair of 
linear equations that can be related to either of Eqs. 
(1. 6) have been solved by an inverse method to obtain 
the general solution to Eq. (1. 5). The particular solu
tions obtained from the theorem of permutability are 
equivalent to the pure multisoliton solutions produced 
by the inverse method. 

Of the nonlinear evolution equations under study at 
present, only the sine-Gordon equation, which is of 
Monge-Ampere form, was originally5 known to possess 
a Backlund transformation which transforms the equa
tion into itself. More recently such transformations 
have been found for the KdV 9 and modified KdV 10-12 
equations. As noted above, they have also been obtained 
from the linear equations of the inverse method. 3 

Since the KdV and modified KdV equations are of 
third order, an extension of the usual Backlund trans
formation theory is nec essary. The extension is minor, 
although the details of the calculation are somewhat 
tedious. One finds that the Backlund transformation for 
the third order equation consists of an equation of first 
order plus an equation of second order. The first-order 
equation is of Riccati form. In the present paper these 
transformations as well as one for the nonlinear 
Schrodinger equation are derived by a method due to 
Clairin. 13 Detailed derivation of the Backlund transfor
mation for the sine-Gordon equation by this method has 
already appeared14•15 and will not be repeated here. 
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The sine-Gordon equation has served as a useful 
guide in constructing Backlund transformations for 
some of the equations to be considered below; the fol
lowing aspect of this equation should be noted: Pulse 
profiles are obtained as derivatives of solutions to the 
sine-Gordon equation. 16 In this instance then, the equa
tion that is transformed into itself by a Backlund trans
formation is the equation for the integral over a pulse 
profile. In the search for such transformations for 
other nonlinear evolution equations, it has been found 
useful to exploit this result. Hence, in the following, 
Backlund transformations are actually found for equa
tions satisfied by integrals over pulse profiles. The 
pulse profiles themselves, of course, satisfy the KdV 
and modified KdV equations. This procedure has not 
been found useful in dealing with the nonlinear 
Schrodinger equation, however, and in that case a 
B~cklund transformation for the nonlinear Schrodinger 
equation itself is obtained. 

The construction of the various Backlund transforma
tions presented in the following sections has been found 
to depend upon the solution of overdetermined sets to 
equations (e. g., ten equations to be satisfied by six un
known functions in the case of the KdV equation). This 
is generally the case. 7 Hence, the equations that possess 
such transformations are of a somewhat special charac
ter. Why so many of the equations that describe non
linear evolution processes happen to belong to this class 
is an apparently unanswered question at the present 
time. Furthermore, the results obtained are character
ized by extensive specialization and hence leave open 
the question of the most general transformations that 
could be associated with these equations. Answers to 
such questions should be forthcoming when a more gen
eral understanding of Backlund transformations in non
linear pulse propagation has been developed. Recent 
algebraic results by Gerber17 and the interpretation of 
Backlund transformations within the framework of dif
ferential forms by Wahlquist and Estabrook18 may pro
vide initial steps toward such understanding. 

To exhibit the relation between a Backlund transfor
mation and the inverse method, the equivalence of the 
well-known Backlund transformation for the sine
Gordon equation and the linear equations of the inverse 
method is summarized here. 3 A similar analysis will 
be applied to each of the Backlund transformations to be 
obtained below. 

Definingr=tan[(z+z')/4], onefindsthatEq. (1.6a) 
becomes 

(1. 7) 

Now, the Riccati equation 

(1. 8) 

is equivalent (although not uniquely) to the pair of linear 
equations 

W1" + PW1 = - RW2, (1. 9a) 

W2x - PW2 = QWlt (1. 9b) 

where r = w1/wz. Hence Eq. (1. 7) may be replaced by 

Wl,,+taw1=tpw2' (1. lOa) 
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(1.10b) 

which have the structure of the equations solved pre
viously by the two-component inverse method. 

As a final example of Backlund transformation theory 
in nonlinear pulse propagation, a Backlund transforma
tion relating the KdV to the modified KdV equation is 
developed. The expectation that such a transformation 
should exist is based upon a previous result of Miura. 1s 

Clairin's method has been used to construct the equa
tion that must be adjoined to the Miura transformation 
to obtain a B~cklund transformation. 

2. KORTEWEG-DEVRIES EQUATION 

The KdV equation will be written in the form 

(2.1) 

To obtain an equation analogous to the sine-Gordon 
equation, one introduces a function representing an 
integral over the pulse profiles that satisfy Eq. (2.1). 
Setting 

z(x, y) = i: dX' u(x', y), 

one finds that z satisfies 

q +3p2+ a=O. 

(2.2) 

(2.3) 

Since interest centers around localized solutions, the 
arbitrary function arising from integration may be set 
equal to zero. 

A functional form must now be chosen for the two 
lower order equations that will play the role of Backlund 
transformations for Eq. (2.3). Guided by the symmetry 
between z and z' in the Bficklund transformations for 
the sine-Gordon equation, one may begin by incorporat
ing such symmetry at the beginning of the present cal
culation. A bit of reflection as well as familiarity with 
the result of Clairin's work shows that a possible choice 
is 

P=f(z,z',p), 

q=<p(z, z', q',r, r',p,p~. 

However, since 

(2.4a) 

(2.4b) 

r=f,,/+fe,p'+!p,r' , (2.5) 

one sees that Eq. (2.4b) is actually equivalent to 

q=qJ(z,zl,ql,p',r~. (2.6) 

The mixed second derivative of z may now be written 
in either of the forms 

dp I I 
dy = feq + fe·q + fp·s (2.7) 

or 

(2.8) 

One now requires the equality of these mixed derivatives 
as well as that z I satisfy Eq .. (2.3). This is conveniently 
expressed by defining a function O(z, Z',p,p', q, q', rl, S/) 
such that 
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0= Up' - qJq')S' + !eq + !.,q' - qJeP 

- qJe'P' - qJp,r' + qJr,(q' + 3p '2 ) = O. 

(2.9) 

Now 

Os' = fp. - qJ., = O. (2.10) 

Since! is independent of q' and r', Eq. (2.10) also im
plies that 

qJ.,., = qJ.'r' = 0 (2.11) 

Also, 

0., = fp,!e + f., - f!p'e - P'!p'e' - r'/p,p' + qJr' = 0 (2.12) 

as well as 

(2.13) 

From a consideration of the functional dependence al
lowed in! and qJ by Eqs. (2.4), Eq. (2.13) implies 

!p'p.=qJr'T.=a(z,z',p'), (2.14) 

where a(z, Z',p~ is unknown. However, if this function 
is nonzero, a nonlinear dependence of f upon P I would 
result. While this might well lead to a valid transforma
tion, it would destroy the expected symmetry of Eq. 
(2.4a) (as well as the Riccati-type nonlinearity antici
pated for the result). Hence the subsequent analysis is 
restricted to the case in which a(z, z I, P ') is assumed to 
vanish. (It is necessarily independent of p I since 
0r'r'r' == - 3fp.p.p. == 0.) 

Equations (2.14) then yield 

fez, Z',p/) = b(z, z ~ p' + c(z, z'), (2. 15a) 

qJ(Z, z', q',P', r~ =b(z, z~ q' + It(z, z',p~ y' + v(z, z',p\ 

(2. 15b) 

in which Eq. (2.11) has again been employed as well as 
Eq. (2.10). The functions c, It, and v arise in the inte
gration process and are to be determined. 

Returning to Eq. (2.9), one also finds that 0r'r' 
==- 2qJr'p'==0 so that A must be independent ofp'. Also, 
one finds that 0P'P'P' = 0, which yields the following 
form for v(z, z',p~ in Eq. (2. 15b): 

v(z, z',p') = v2(z, z') p'2 + vt(z, z') p' + vo(z, z'). (2.16) 

The subsequent analysis becomes extremely cumber
some if the general form for b(z, z') is retained. For
tunately, this is unnecessary. Useful results are ob
tained by assuming b(z, z') to be a constant. 

The structure of the Backlund transformation has 
thus been reduced to 

p=bp' + c, 

q == bq' + Ar' + V21>12 + viP' + vo, 

(2. 17a) 

(2. 17b) 

where b is a constant while c, A, and the three VI are as 
yet undetermined functions of z and z'. 

Substituting Eqs. (2.17) into 0 and equating to zero 
the coefficient of each of the various dependences upon 
r',p', and q' in 0 (since these are independent), one 
obtains the following set of seven equations that must be 
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satisfied by the five unknown functions and the 
constant b: 

2112= - (bA. + A •• ), 

71.= - (bc. + c •• ), 

(2. 18a) 

(2. 18b) 

(2. 18c) 

(2. 18d) 

(2. 18e) 

(2. 18f) 

(2. 18g) 

In writing Eq. (2.9) for n the requirement that z' 
satisfy Eq. (2.3) has alrea~y been introduced. It must 
also be required that z satisfy this same equation. Cal
culation of the third derivative from Eq. (2 . 17a) shows 
that 

a = ba' - Ar' + 211Zp 12 

+ P '[2bcc". + 2cc ... + c.(bc. + c •• )] + c2c •• + cc~, (2.19) 

where the definition of 112 from Eqs. (2. 18a, b) has been 
employed. The requirement that Eq. (2.3) also be satis
fied by z now lead to 

112-b+b2=0, 

bc .. + 2b + cu ' = 0, 

c2c .. + cc;+ 110 + 3cz=0. 

(2.20a) 

(2.20b) 

(2.20c) 

Equations (2. 18) and (2. 20) are the complete set of 
equations that must be satisfied. Such overdetermined 
systems are a characteristic of calculations dealing with 
Backlund transformations. 

Equation (2. 18g) implies that 110 may be written 

110= 1/J(z') c(z, z'), (2.21) 

where 1/J(z') is to be determined. A first integral for 
Eq. (2.20c) may be obtained at this point. One finds 

(2.22) 

The consideration of elliptic functions may be avoided 
by setting K = O. Equation (2.22) now implies 

c.,,=-l. (2.23) 

From Eq. (2. 20b) , 

c .. ,= - b, (2.24) 

and, finally, Eqs. (2.20a) plus (2. 18a, b) yield 

c •••• =2b+b2. (2.25) 

Integration of these last three equations yields 

c(z, z') = m _HZ2 + 2bzz' - b(2 +b)Z'2] +kz +lz', (2.26) 

where k, 1, and m are constants of integration. The 
choice of these constants is quite critical for the sub
sequent analysis. From Eq. (2. 17a) one sees that solu
tions which are to vanish at x = - co, as is required by 
Eq. (2.2), will require m = O. However, it is the 
derivative of z that yields u the solution of the KdV 
equation. Solutions with m '" 0 may be used for this. It 
is such a solution that leads to previously reported re
sults. 9 This point will be taken up again in connection 
with the theorem of permutability. The present calcu-
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From Eqs. (2.18) one now obtains 

71.= 2b(z - z,), 

111 = - 2bm - b(Z2 _ 2zz' + b2z'2), 

112=b-b2, 

1/J= - 2m - 2b(1 + b) Z12. 

2160 

(2. 27a) 

(2.27b) 

(2.27c) 

(2. 27d) 

Equations (2. la, b, c, f, g) and Eqs. (2.20) are now found 
to be satisfied identically while Eqs. (2. 18d, e) require 
b = - 1. The form of the Backlund transformation has 
now been completely determined and agrees with that of 
Wahlquist and Estabrook. 9 The result also takes the 
completely symmetric form2o 

P +p'= m- i(z- Z')2, 

q + q' = (z - z ')(r _ r') _ 2(p2 + pp' + p'2). 

A. Theorem of permutability 

(2. 28a) 

(2. 28b) 

As noted in the introduction, the Backlund transforma
tion for the sine-Gordon equation was used long ag06 to 
derive a theorem of permutability. This is a relation 
among the solutions that permits the construction of an 
infinite sequence of additional solutions without addi
tional quadrature. For coherent optical pulse profiles, 
this result has been used16 to construct solutions for 
2n1T pulses (n = 0, 1, 2, ... ) . 

A similar situation exists in the case of other equa
tions for which a Backlund transformation has been 
obtained. The result for the KdV equation was given by 
Wahlquist and Estabrook. 9 Their results are briefly 
summarized here along with an application to a particu
lar example. 

First, a single soliton solution may be obtained by 
noting that z 1=0 is a solution to the KdV equation. Then, 
using this result as z' in Eqs. (2.28), one finds that z 
satisfies 

q=zr- 2p2= - 2mp. 

A solution of these equations is 

z = (2m)1/2tanh[(m/2)1/2(x - 2my)]. 

(2. 29a) 

(2. 29b) 

(2.30) 

As noted above, the nonzero value of m has led to a 
solution for z that does not vanish for x = - co. The cor
responding solution of the KdV equation is 

u= p = msech2[(m/2)1/2(x - 2my)]. (2.31) 

Unlike the sine-Gordon equation, Eq. (2.3) has solu
tions that are divergent. Equations (2.29) also have the 
solution 

z* = (2m)1/2coth[(m/2)1/2(x_ 2my)]. (2.32) 

In using the theorem of permutability to construct multi
soliton solutions of the KdV equation, care must be 
taken to exclude such divergent results. Perhaps para
doxically, exclusion of divergent multisoliton expres
sions is carried out by a judicious usage of the diver
gent solution z* given above. 9 

To obtain the theorem of per mutability, one notes 
that Eq. (2. 28a) may be interpreted as a transforma-
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tion from a known solution Zl to a new solution zm which 
contains the constant m. Four such transformations 
may be written 

(2. 33a) 

(2. 33b) 

Pm1m2 + Pm1 = m2 - t(zm1m2 - zm1)2, (2.33c) 

Pm1m2 +Pm2=m1-t(zm1m2-zm2)2. (2. 33d) 

In the latter pair of equations the two known solutions 
are those obtained in the previous two equations. One 
requires that the two latter transformation equations 
lead to the same final solution zm

1
m

2
• Note that the same 

two constants have been used again but they have been 
interchanged so that m2 is associated with Zm1 and vice 
versa. Subtracting the second from the first and the 
fourth from the third and finally eliminating Pm1 - Pm2 
among the two resulting equations yields 

(2.34) 

The possibility of divergence in this result may be 
removed by noting from Eqs. (2.30) and (2.32) that 
Zl < (2m)1/2 < z1. 

As an example, note that the choice ZI = 0 and ml = 8, 
m2 = 2 with the divergent solution used for z1 leads to 

zmlm2 = 6(2 cothA - tanhB)-l, (2.35) 

where 

A=2x-3y, 

B=x-4y. 

Differentiation of Eq. (2.35) then yields 

U - 12 4cosh2B + cosh2A + 3 
3 - [cosh(A + B) + 3 cosh(A - B) J2' 

(2. 36a) 

(2. 36b) 

(2.37) 

which agrees with a previously quoted21 two-soliton 
solution for the KdV equation 

The choice m = 0, 1 = k in Eq. (2. 26) would have led 
to the single soliton result 

Z =k[l +tanhtk(x- k2y)], (2.38) 

which has behavior at X= - 00 that is consistent with Eq. 
(2.2). However, there appears to be no advantage in 
going to this solution since the theorem of per mutability 
is not as concise as Eq. (2.34) and the divergent solu
tions are still required. 

B. Relation to the inverse method 

Since the first of the two Backlund transformation 
equations listed in Eqs. (2.28) is of Riccati type, the 
linearization procedure outlined in the introduction may 
be applied. By setting r = Z - Z I, Eq. (2. 28a) becomes 

r:r-tr2+(m- 2p)=0. (2.39) 

Comparison with Eq. (1. 8) shows that the appropriate 
linear system is 

(2.40a) 

(2.40b) 

The linear transformation WI = - VI + i t:V2, W2 = - V2 

yields the linear equations treated in Ref. 2. 
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In the present case the second-order equation is 
actually more convenient to analyze. One finds 

V2:r:r + (p - tm)v2 = 0, (2.41) 

where P = oz/ox= u, the solution of the KdV equation. 
Use of the inverse method to obtain P from this equation 
is now well known. 1 

3. MODIFIED KORTEWEG·DEVRIES EQUATION 

A procedure quite similar to that of the previous sec
tion yields Backlund transformations associated with the 
modified KdV equation. This latter equation will be 
written in the form 

Uy+6u2u:r+u:rn=0. (3.1) 

The integral of the pulse profile now satisfies 

q + 2p3 + a = 0, (3. 2) 

where z is again related to U as in Eq. (2.2). The gen
eral functional forms chosen for the Backlund trans
formation are the same as those of Eqs. (2.4a) and 
(2.6). One finds that relations of the form of Eqs. (2.17) 
are again obtained. One may again choose b to be a 
constant. However, since Zl now satisfies Eq. (3.2) in
stead of Eq. (2.3), Eqs. (2. 18d) and (2. 18f), which are 
the coefficients of P 12 and P 13 in the calculation of the 
previous section, must be modified. It is found that 
they must be replaced by 

(3.3a) 

(3.3b) 

The requirement that z also satisfy Eq. (3.2) leads to 

b(b2 - 1) = 0, 

v2 +2b2c=0, 

2bc + c •• ' + bc .. = 0, 

cc .. + c! + 2c2 + 1jJ(z ') = o. 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

Equation (3. 4a), which r-esults from the cubic term in 
Eq. (3.2), imposes an additional restriction on the 
constant b. (It should be noted that the class of Backlund 
transformations being considered here does not have 
provision for powers of P greater than 3. Hence, modi
fied KdV equations of the form uy + ti'u:r + un" = 0 with 
n > 2 will not have Backlund transformations of the 
"Riccati type" being considered here. The lack of 
soliton behavior observed in numerical solutions of 
these equations is undoubtedly related to this fact.) 
Combination of Eqs. (3.4b) and (3.4c), with v2 again 
obtained from Eqs. (2. 18a, b), yields 

(3.5) 

A first integral of the ordinary differential equation in 
Eq. (3.4d) is 

c! + c2 + 1jJ(z ~ = 0, 

which implies 

Integration of Eqs. (3.7) and (3.5) yields 

(3.6) 

(3.7) 

c(z, z~ = c, exp(iv) + c2 exp(- iv) + c3 exp(iw) + c4 exp(- iw), 

(3.8) 
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v=z +bz', 

W=Z - bz', 

(3.9a) 

(3.9b) 

and the Cj are constants of integration. A result of 
sufficient generality for present purposes22 is obtained 
by setting c 3 = C4= 0, c2 = - C1' Then 

C(z, z') = a sinv, (3.10) 

where a= 2ic1' The remaining functions in the trans
formation equations are readily found. One obtains 

A= - 2ab3 cosv, (3.11a) 

vo= - a3 sinv, (3.11b) 

v1=-2a2b3
, (3.11c) 

v2= - 2ab2 sinv, (3.11d) 

1/J=_a2. (3.11e) 

A Backlund transformation for the modified KdV 
equation is therefore 

p = bp' + a sinv, 

q= bq' - 2a[br' cosv +p'2 sinv +ia(p +bp')], 

(3. 12a) 

(3. 12b) 

where, according to Eq. (3.4a), b = ± 1. The solution 
b = 0 must obviously be discarded. A completely sym
metric form of Eq. (3. 12b) is 

q = bq' - a[(r + br') cosv + (p2 + p12) sinv], b = ± 1. 

(3.13) 

The choice of signs is expected since if z' is a solution 
of Eq. (3.2) so is -z'. 

A. Theorem of permutability 

The result given in Eq. (3. 12a) is quite similar to 
the Backlund transformation equations for the sine
Gordon equation [cf. Eqs. (1.6)]. Since only one of the 
transformation equations is needed for the theorem of 
permutability, there is a corresponding similarity in 
the permutability relation as well. A calculation identi
cal to that of Sec. 2A yields 

tan (Z3;ZO) =b (~~~~:)tane1;Z2), b=±1. (3.14) 

Starting from zo= 0, one finds 

Zj = 2 tan-1 exp(llj), i = 1, 2, (3.15) 

where 

III = alx - afy + oj, (3.16) 

in which 01 is an integration constant. Equation (3.14) 
then yields 

_ 2 t _1 [(a1 + a2) sinhi( III - 1l2)J Z3-± an hi() . a1 - a2 cos "2 III + 112 
(3. 17) 

A solution of this type has been obtained by Wadati23 by 
employing the inverse method. 

B. Relation to the inverse method 

The change of variable r = tan[i(z + bz')] converts 
Eq. (3. 12a) to the Riccati equation 
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(3.18) 

As noted in the introduction, use of Eqs. (1. 8)-(1.10) 
leads to the linear equations considered by Ablowitz, 
et al., viz. 

Wlx + i aw1 = PW 2, 

Wax - i aw2 = PW1' 

(3. 19a) 

(3. 19b) 

Backlund transformation results equivalent to those 
presented here have recently been derived by Wadatill 

and Hirota12 and have been obtained directly from the 
linear equations of the inverse method by NewelL 3 

4. NONLINEAR SCHRODINGER EQUATION 

In treating the nonlinear Schrodinger equation, the 
introduction of an area function has not been found use
ful. (Indeed, the single soliton pulse profile for this 
equation is not the derivative of any particularly simple 
analytic function.) Proceeding, then, to a consideration 
of the nonlinear Schrodinger equation itself, the equa
tion under study and its complex conjugate are taken in 
the form 

iq + r+ Z2Z= 0, 

- iq + r + Z2Z = 0, 

(4.1a) 

(4.1b) 

where the bar indicates complex conjugate. The general 
form adopted for the Backlund transformation is 

p = f(z, z, z I, Z',p',p'), 
q = 'P(z, z, z', Zl, q', q',p',p'). 

(4.2a) 

(4.2b) 

In addition, one requires the complex conjugate trans
formation equations Ii =1, q = (jJ. Introducing the function 
G as in the previous examples and eliminating rand r 
by Eqs. (4.1), one finds that 

G$.=fp'-'P.'=O, (4.3a) 

G!. = /po - 'Pq• = 0, (4.3b) 

which reduces G to the form 

G= f8'P + f8·q' + fEep + f"q' - 'P8f - 'Pe'P' - 'Pil 

- 'Pi'P' + 'Pp.(iq' + z 12Z/) + 'P~.(- iq' + Zl2Z ') = o. (4.4) 

From Eqs. (4.2) and (4.3) 

'Po'.' = 'P.'ij' = 'Pij'ij' = O. (4.5) 

In addition, employing Eqs. (4.3), 

G •••• = 2ifp.p. = 0, 

G •••• = - 2if,§,p' = O. 

Equations (4.3) then imply 

'P.'p. = 'P •• p• = O. 

Also, one finds 

G •• p• = - i'Pp•p• = O. 

Integration of Eqs. (4.7) and (4.3) yield 

fp· =g~,p') = 'P •• , 

(4.6a) 

(4.6b) 

(4.7) 

(4.8a) 

(4.8b) 

(4.9) 

where Z stands for the set of four dependent variables 
z, Zl, Z, Z', and g is a function to be determined. Subse-
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quent integration of Eq. (4.9) and use of Eqs. (4.6) 
leads to 

/== kP'P' + lp' + mp' + n, (4.10) 

where k, l, m and n are arbitrary functions of Z. Furth
ermore, Eqs. (4.3) and (4.10) yield 

qJ==k(plq' +p'q') +lq'+m?j'+ op'P' +Tp' + 8]5' + X, (4.11) 

where a, T, 8, and X are also functions of Z. 

The requirement that the unprimed variables satisfy 
Eq. (4.1) is now imposed. Calculating r from Eq. 
(4.10), one finds that 

iq + r== - zZz= - kJilzl2z ' + kp'(irj' + 1'') _lZ'2Z' + m(iq' + 1") 

+Ap'ji' + Bp' + Cpt + Dp'Zji' + Ep,2p ' + Fpl2 

+ GP'2+H, (4.12) 

where Eqs. (4.1) in terms of the primed coordinates 
have been employed to write the coefficients of kp' and 
l in terms of Z. The variables p', p', q', 1", and the 
Z are independent variables, and therefore Eq. (4.12) 
must be satisfied identically. Hence one sets A, ... , G 
= 0, and H = - zZz. Since the coefficients of kP' and m 
can not be expressed in terms of Z by employing Eq. 
(4.1b), one must set k == m = O. For k = m == 0, the re
quirement that Eq. (4.12) be satisfied indentically 
leads to 

A = ia + i lE + li' = 0, 

B=iT + l~n + l.n+ ln~ +n~, = 0, 

C=iB+niZ +ni' =0, 

F==l", +ll,,=O, 

H =nn" +nnE-lzl2z' + iX = - Z2Z, 

(4. 13a) 

(4. 13b) 

(4. 13c) 

(4. 13d) 

(4. 13e) 

as well as D=E=G=O. Equation (4. 13d) may be satis
fied by choosing 1 to be a constant. Then a= 0 by Eq. 
(4. 13a) . Such a solution has been found to be adequate 
for present purposes. 2~ 

The Backlund transformation has now been developed 
to the form 

p=ap'+n, 

q=aq'+Tp'+BP'+X. 

(4. 14a) 

(4. 14b) 

fu addition there are the complex conjugate expressions 

p =?ij'+n, 

q = aq' + 'Tp' + ep' + x. 
(4. 15a) 

(4. 15b) 

Substitution of these four expressions into the form 
of n given in Eq. (44.) leads to 

n=J q' + Kp' + Lp' + M + Nq' + ppl2 + Qplj)' +Rpl2= 0, 

(4.16) 

where the expressions J, ... , R are functions of Z that 
are given below in the simplified form in which they are 
used in the subsequent analysis. Each such coefficient 
is again required to vanish identically. fu particular, 
one finds 

(4. 17) 

In conjunction with Eq. (4. 13c) this leads to B = O. With 
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this simplification the vanishing of the coefficients in 
Eq. (4.16) yields the equations 

J = an" + nIt' + iT = 0, 

K == Tn. - axe -n1'c - x." - n1'i= 0, 

L =n, 'f - ax,- Xi' = 0, 

M=xn. +XnE-nX. -nx.+ TZ'Zz'== 0, 

N = an, + nE' = 0, 

p= - (aT. + 1'e') = 0, 

Q=-(a1'i+1'.,)=O, 

as well as R = 0 identically. 

(4. 18a) 

(4. 18b) 

(4. 18c) 

(4. 18d) 

(4. 18e) 

(4. 18f) 

(4. 18g) 

Equation (4. 13e) plus Eqs. (4.18 constitute a set of 
eight equations that must be satisfied by n, 1', X and their 
complex conjugates. The solution is here outlined for 
the case a = 1. (The result for a = - 1 may be ob-
tained by replacing Zl by - z' in the result to be ob
tained here.) 

By introducing 

W=Z + Zl, v==z - z', (4.19) 

Eqs. (4. 18f, g) show that T= 1'(v, V) while Eq. (4.18e) 
yields n = new, v, V). Equation (4. 18a) then leads to 

new, v, il) = - hWT(V, V) + y(v, il), 

where y is to be determined. From Eq. (4. 18c) 

2X = TW(- tiWTij + Yii) + t(w, v, il), 

where t is to be determined. From Eq. (4. 18b), 

t= w(- ti~ + Tyv - YTv - yTij) + T/(v, V), 

(4.20) 

(4.21) 

(4.22) 

where 1) is to be determined. Substitution into Eq. 
(4.13e) and separation of the resulting equation accord
ing to powers of w leads to 

'YTv + YTii== O. 

TTv==_V, 

{T'Yv= 0, 

- 'hT'Y + 'Y'Y v + Y'Y/i + tiT/ = - tvv2
• 

Equations (4. 23a, c) are satisfied by 

T= i(b _ 2vil)1IZ, 

(4. 23a) 

(4. 23b) 

(4. 23c) 

(4. 23d) 

(4. 23e) 

(4.24) 

where b is real constant. Equation (4. 23b) is satisfied 
by 

y=ikv, 

where k is a real constant. 

Equation (4. 23e) then yields 

T/ = iv(t 1 v 12 + kT - 2k2
), 

and Eqs. (4.26), (4.22), and (4.21) lead to 

X = - kn + iTn + hv( 1 W 12 + 1 V 12). 

(4.25) 

(4.26) 

(4.27) 

Equation (4. 18d), which has not been used in the analysis 
thus far, is now found to be satisfied indentically. 

The Backlund transformation is therefore 
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p=p'-"hwT+ikv, 

q=q'+tT(p +p~ - kn +hv( Iwl 2 + Iv 12), 

where 

T=±i(b_2IvI2)1/2 

and band k are arbitrary real constants. 

(4. 28a) 

(4. 28b) 

(4.29) 

While a theorem of per mutability may be obtained 
from Eq. (4. 28a) by following the procedure used in 
subsections 2A and 3A, the result appears to be too 
complex to be useful for computational purposes. 

Connection with the inverse method 

Contact with the inverse ,method may be made by 
defining 

r= (b - 21v 12)1/2/21/2V. (4.30) 

Equation (4. 28a) and its complex conjugate yield 

z[r r + ikr + 2-1 /2(zr2 + z)] 

(4.31) 

If one now sets either z or z 1 = 0 the other variable 
satisfies a Riccati equation. By following the procedure 
outlined in the introduction, this Riccati equation is 
equivalent to the pair of linear equations 

Wb + tikw1 = - 2-1/2-ZW2, 

war - tikw2 = 2-1/2ZW1, 

(4. 32a) 

(4. 32b) 

which are the linear equations for the inverse problem 
that has been associated with the nonlinear Schrodinger 
equation. 4,2 

5. RELATION BETWEEi KdV AND MODIFIED KdV 
EQUATIONS 

The Backlund transformations constructed in the 
three previous sections are of a very special type in 
that they transform a given equation into itself. As 
noted in the Introduction, a more general usage of the 
transformation theory involves transformations between 
equations of different form. 

The relation between the KdV and modified KdV equa
tions discovered by Miura19 leads one to suspect that 
these two equations may actually be related by a 
Backlund transformation. In the present section this 
is shown to be the case. Clairin's method is employed 
to obtain another equation that may be paired with the 
Miura transformation to complete the Backlund 
transformation. 

To avoid the introduction of imaginary quantities, the 
KdVand modified KdV equations are written q' + 6Z lp' 
+ cv. ' = 0 and q - 6z 2p + cv. = 0, respectively. The general 
form of the Backlund transformation will be taken to be 

p = f(z, z,), 

q= cp(z, Z',p', r'). 

(5.1a) 

(5.1b) 

The choice of the first equation is motivated by the 
known form of the Miura transformation (which in the 
present notation is ± p = Z 1 + Z2) while the choice of the 
second equation is dictated by the type of derivatives 
that appear when equality of mixed second partial de-
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rivatives that appear when equality of mixed second 
partial derivatives is imposed and account is taken of 
the relation among these derivatives that is imposed by 
the KdV equation. 

Following the procedure employed in the three pre
vious sections, one defines 

n=f~cp + f~·q'- cp~f- cp~.p' - cpp. r ' + CPr.(q' + 6Z'p') =0. 

(5.2) 

Then 

0,.' = f~. + CPr' = 0, 

n p•r• = f~.~. - CPP'p' = 0, 

n p•p• = f~f~·~, - fu·~·f - 2cp~.p' - p'f~.~.~" 

n p•r•p• = - CPP'p'P' = 0, 

From Eqs. (5. 3f) and (5. 3c) 

f~.~. =CPP'p' =a(z), 

(5.3a) 

(5.3b) 

(5.3c) 

(5. 3d) 

(5.3e) 

(5.3f) 

(5.4) 

where the unknown function a(z) arises from integration. 
It turns out that a(z) must be set equal to zero to have 
f(z, z ~ reduce to the Miura transformation. Then, inte
gration of Eq. (5.4) in conjunction with Eq. (5.3a) 
yields 

f~. =g(z) = - CPr' (5.5) 

as well as cpp.= A.(z, Zl, r') where both g(z) and A.(z, z'r~ 
are to be determined. Equations (5. 3b) and (5. 3d) re
duce the functional dependence of A. so that 

CPp' = A.(z). (5.6) 

Integration of this result and use of Eqs. (5.3a) and 
(5.5) leads to 

cP = Ap' - gr' + II(Z, z ~ . (5.7) 

The z' dependence is now determined by observing 
that 

08't:'P' == - CfJ8'e'I1' = 0 (5.8) 

and 

(5.9) 

Derivation of these results employs Eq. (5. 3d) in the 
form CP~'p' = 0, which follows from the vanishing of a(z). 
Sincef~. =g, integration of Eq. (5.9) yields 

cp~.~. = zJ!(z) (5.10) 

with 

zJ!(z) =Kg(z), (5.11) 

where K is a constant of integration. Integration of 
Eq. (5.10) yields a form for cP in which all but the z 
dependence has been determined. The Backlund trans
formation has now been developed to the form 

p=gz'+h, 

q = Ap 1 _ gr' + tKgz 12 + XZ ' + 8, 

(5. 12a) 

(5. 12b) 

where g, h, A., X, and 8 are as yet undetermined func
tions of z. Using Eqs. (5.12) in Eq. (5.2) and then set-
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ting equal to zero the coefficient of each of the differ
ent dependences upon the primed variables in {1 yields 

gX' - Ag' +g(6 +K) = 0, 

g'X - X'g+%K(gh' - hg') = 0, 

g'8- 8 'g+ Xh' - hX' =0, 

X=Ah'-hX', 

8h' -h8'= 0, 

X=hg' -gh'. 

Equations (5. 13b) and (5. 13f) lead to 

KX= 2(xg' - gx'). 

(5. 13a) 

(5. 13b) 

(5. 13c) 

(5. 13d) 

(5. 13e) 

(5. 13f) 

(5.14) 

Specialization of Eq. (5. 12a) to the Miura transforma
tion requires g= ± 1. The construction of {1 has already 
incorporated the KdV equation. The requirement that 
Eqs. (5. 12) yield q - 6z 2p + 0/ = ° leads to 

h' + X=O, 

h"+%K=O, 

(5.15a) 

(5. 15b) 

(5. 15c) 

(5. 15d) 

These equations are readily solved. One finds 
h=±Z2, X=-2z, X='F 2z2, 8=0, K=-4. Equations 
(5. 13a, d, e) are also satisfied by these solutions. Final
ly, the Backlund transformation is 

P =± (z' +Z2), 

q = 'F r' - 2(zp' + z'p). 

Equation (5. 16a) is the Miura transformation. 
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theory* 

K. M. Case 

The Rockefeller University, New York, New York 10021 
(Received 17 June 1974) 

It is demonstrated that there is a close parallel between the theory of a class of orthogonal 
polynomials and scattering theory. In both cases a fundamental role is played by a particular 
solution of the basic difference (differential) equation which we call the Jost function. Under rather 
general conditions this function has simple analytic properties. It determines and is largely determined 
by either the asymptotic phases or the continuous part of the weight (spectral) function. Indeed this 
is more than an analogy. By appropriate limiting procedures one can pass from a result about 
orthogonal polynomials to one in scattering theory. Conversely, scattering theory throws considerable 
light on theorems about orthogonal polynomials. 

I. INTRODUCTION 

Two highly developed theories of mathematical phys
ics are those of orthogonal polynomials and potential 
scattering. While much of the work on orthogonal poly
nomials predates that on scattering theory, the latter 
has been much more intenSively investigated in the last 
25 years. Recentlyi we have seen that the theory of 
orthogonal polynomials sheds considerable light on the 
inverse problem of scattering theory. Here we will turn 
the relationship around. We want to show that methods 
of scattering theory form a unified basis for obtaining 
the various properties of orthogonal polynomials. Very 
little in the way of new results are obtained. Our main 
attempt is to demonstrate that many diverse conclusions 
all readily follow from this particular point of view. 

In order to make the relationship particularly clear 
we restrict ourself to polynomials defined over a re
gion of compact support on the real axis. In particular, 
the weight function with respect to which OUr poly
nomials are to be orthogonal is continuous over a finite 
interval of the real axis. In addition, it may have a 
finite number of jump pOints outside of that interval. 

Our program is the following: In Sec. n we briefly 
sketch the methods and results of the theory of potential 
scattering. The next section gives an appropriate 
formulation of the problem of orthogonal polynomials. 
and indicates the relationship to the moment problem. 
The heart of this paper is Sec. IV in which it is dem
onstrated that the properties of these orthogonal poly
nomials can be determined completely paralleling the 
methods of scattering theory. Indeed by an appropriate 
limiting process we can at any point pass from a prop
erty of orthogonal polynomials to one of scattering the
ory. In Sec. V some applications of the general formal
ism are given. The moment problem is briefly dis
cussed in Sec. VI. 

II. SCATTERING THEORy2 

We consider the Schrodinger equation with spherically 
symmetrical potential q(x). Restricting attention to 
spherically symmetrical solutions (S waves), the equa
tion (in appropriate units) is 

-G :;2 +q(x)) I/J(E,x) =EI/J, 0 <Sx <00. (II. 1) 

Let us assume that q(x) satisfies the conditions 
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(II. 2) 

Of particular interest are the "regular" solutions of 
(n.l). These are the bounded solutions subject to 

dl/J 
I/J(E, 0) =0, dx(E,O)=C*O. (II. 3) 

The square integrable such solutions (if they exist) be
longing to eigenvalues E, are the bound states. In addi
tion, there are "scattering solutions" for all E, 0 <E 
< 00. For large x these behave as 

I/J(E, x) - A(E) sin[ v'2Ex + 6(E)]. (n.4) 

The direct problem is to determine the E, and 6(E) 
(0 <s E < 00), given q(x). In the inverse problem the ques
tion is to find q(x) given the Eh 6(E), and constants P, 
defined below. 

To investigate the general properties it is convenient 
to introduce two other solutions I/J,,(k,x) of Eq. (II. 1). 
With k 2 = 2E these are defined by the boundary conditions 

~~t;,t II/J(k,x)-exp(±ikx)I =0, Imk{:~. (n.4) 

Convenient integral equations incorporating these condi
tions are readily obtained. In particular, for I/J. we have 

I/J.(k, x) = exp(ikx) - ~ ;: '" sink (x - y)q(Y)I/J.(Y) dy. (II. 5) 

From the definitions we readily see that for Imk = 0, 

I/J.(k,x) = I/JJ- k,x) 

and 

I/J!(k,x) = I/JJk,x). (n.6) 

Further, using the constancy of the Wronskian and 
the boundary conditions we can express the regular 
solution (for Imk = 0) in terms of I/J" as 

C 
I/J(k, x) = 2ik [I/JJk, O)I/J.(k, x) -I/J.(k, O)I/JJk,x)]. (n.7) 

[Note this implies I/J(-k,x) = I/J(k, x) for Imk=O.] Clearly, 
the Jost3 function 

f.(k) = I/J.(k, 0) (n.8) 

plays a very fundamental rule. Thus: 

(1) For large x the solution (II. 7) behaves as 

Copyright © 1974 American Institute of Physics 2166 
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l/J(k, x) - (C II. Ilk) sin(kx + Ii) (ll.9) 

where 

Ii = - arg/.(k), (ll.10) 

(i. e., the phase shift is just the negative of the argu
ment of/J. 

(2) The bound states are at the zeros of I.(k) for Imk 
~ O. Indeed, if I.(k j ) = 0 we have 

(ll.ll) 

Using essentially only Green's identity, we can then 
establish that 

(a) The discrete eigenvalues are such that Rek j = 0, 
Imkj~ O. 

(b) They are simple. 

(Alternatively, the E j are real, negative, and simple.) 

Further, 

('" Ii (EE') J
o 

l/J(E,x)l/J(E',x)dx= p'(E) , 0 <E,E' <00, (ll.12) 

with 

, 2..f2E 
P (E) = 1T C2I:f.(E) 12 , (II. 13) 

10'" 1jJ(E, x)l/J(Ej, x) dx =0, 0< E < 00, E j a discrete 
eigenvalue, (ll.14) 

and 

10'" 1jJ(Ehx)l/J(E"x) dx = Ii (i,j)/pp 

with 

(II. 15) 

(II. 16) 

The integral Eq. (II. 5) plus the assumed properties of 
q(x) imply that/.(k) is analytic in the upper half k plane 
and continuous on the real axis. This implies the dis
crete eigenvalues are finite in number. The analyticity 
and Cauchy's theorem then enable us to prove the com
pleteness theorem 

1.: 1jJ(E, x) l/J(E, x') dp(E) = Ii(x - x'), (II. 17) 

where 

aM 

dp(E) =6 pjli(E - E i ) dE, - 00 <E $; 0, 
j 

dp(E)=p'(E)dE,O$;E<oo. 

In the inverse problem we are given the Pj, E j (i 

(II. 18) 

(II. 19) 

= 1,2, ... ,N) and o(E), 0 <E < 00. [It may be noted that in 
virtue of Levinson's theorem4 these are not completely 
independent. We have the relation Ii(oo) - 5(0) = - 2rrN. ] 
From the above we see that we are thus given the phase 
of I.(k) on the real axis and the position of its zeros in 
the upper half plane. Using the analyticity of I. (k) and the 
fact (from Eq. (II. 5)] that 1.(00) = 1, we can by simple 
function theoretic arguments (similar to those given in 
Sec. IV) determine I.(k) for Imk> O. From (II. 13) and 
(ll. 16) we see we then know dp(E) for - 00 < E < 00. The 
solution of the Gelfand-Levitan5 equation then leads to 
q(x). 
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We will see that there is an analogous problem in the 
theory of orthogonal polynomials. There again we will 
want to construct a spectral function p from a knowledge 
of a phase and the position of certain zeros. The proce
dure is as above. First the Jost function is found and 
then P'. 

However, an equally natural problem arising for 
orthogonal polynomials has an analog in our present dis
cussion: How can we construct the Jost function given 
the E j and p' (E)? In order to illustrate the close rela
tion between ordinary scattering theory and the theory 
of orthogonal polynomials we here give a somewhat de
tailed discussion of this construction. 

First consider the following slight modification of the 
Poisson-Jensen formula. 6 Suppose h(k) is analytic in 
the upper half plane h(oo) = 0 and on the real axis h(k') 
is continuous and h*(k') =h(- k'). Then with k in the 
upper half plane we have by Cauchy's theorem 

and 

or 

h(k) = ~ ('" h(k') dk' 
21TZ J_oo k - k' 

_ ~ 1'" [hr(k') +ihm(k')]dk' 
- 2rri .00 k' - k 

o = ~ £'" [hr(k') - ihm(k')]dk' 
2rri .'" k' - k 

Adding Eqs. (II. 20, 21) yields 

h(k) = ~ 1. 00 hr(~') dk' 
1fZ.", k - z 

(II. 20) 

(ll.21) 

(II. 22) 

Now if iK j (i = 1,2, ... ,N) are the zeros of I.(k) in the 
upper half plane we know from the properties enumerat
ed earlier that In{j.(k)nf=d(k+iKj)/(k-iKj)]} has all the 
properties required for the representation of Eq. (II. 22). 

:. I.(k) = TI (k - ~Kj) exp(~ f'" In 1 t·fk') I dk'), (II. 23) 
1=1 (k +ZKj) 1TZ.'" k - k 

since I (k' +iKj)/(k' - iKI) 1= 1, for k' on the real axis. 
Finally, to express I. in terms of p' it is convenient to 
use the evenness of In 1/.1 to write the integral as one 
over E' = k,2/2. Then from the relation of II. I to p' we 
obtain 

Among other possibilities this equation may be re
garded as a source of sum rules. Thus imagine we have 
some independent means of calculating the behavior of 
I. for large k [say from the integral Eq. (II. 5)]. Suppose 
this has the form 

(II. 25) 

Then expanding Eq. (II. 24) in powers of 11k we have 
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sum rules relating moments of lnp' to the coefficients 
C/. 

As a simple example consider the case where there 
are no bound states. Then as an approximation to Eq. 
(IT. 5) (valid for large k) we have 

I/!.(k,x) ::::exp(ikx) - i lao sink (x - y)q(y) exp(iky)dy. 

Then 

f.(k) = I/!.(k, 0)::::1 + ~ lao q(y) dy. 

Thus 

C1=ifo
ao

q(y)dy. 

(IT. 26) 

(IT. 27) 

On the other hand, expanding Eq. (IT. 24) (to order 11k) 
we find 

f (k) ::::1-!.- ~ (ao 1n{(1T/2)C
2
p'(E')Vv'2E'} dE'. 

• k 1T Jo v'2E' 
(II. 28) 

Comparing Eqs. (II. 27) and (II. 28) yields the relation 

l ao (y) d = _ ~ lao In / (1T/2)C2(E')J dE'. (II. 29) 
o q y 1T 0 \ ;f2JF I ;f2JF 

Finally, we would like to point out the relationship of 
the functions I/!: to certain other solutions of the Schro
dinger equation. (The analog of these other solutions 
play a significant role in the classical discussions of 
orthogonal polynomials. ) 

Thus to the functions I/!(Ej,x), i = 1, .. .• N, I/!(E,x). 
0"" E < 00, we associate another set of functions defined 
by 

A.(E )= 1 1'" I/!(E',x)dp(E') 
'I' ,x 2 E'- E . _ao (II. 30) 

These are at first defined for all nonreal E but then also 
for real E (two of them) by considering the limiting 
boundary values. 

It may be noted that these associated functions satisfy 
the Schrodinger equation (II. 1) for all x*O. 

Indeed, 

( 
1 d 2 ~ - "2 dx2 +q(x); t/>(E,x) 

=11ao(_1~ ()~I/!(E"X)dP(E') 
2 2 dx2 + q x E' - E 

-'" 
= 1 f ao E'I/!(E', x) dp(E') 

2 E'-E _ao 

_ 1 lao (E' -E +E)I/!(E', x) dp(E') 
- 2 E'- E _ao 

=E1 lao I/!(E',x)dp(E') 11 ao >/'(E' )d (E') 
2 E' - E + 2 '1', X P • 

• 00 .00 

But putting x' = 0, 1J;(E', 0) = C in Eq. (11.17), we see that 

L: I/!(E',x)dp(E') = o(x)/C. 

Therefore, 

( 
1 d 2 ~ o(x) - "2 dx2 +q(x») t/>(E,x) =Et/>(E,x) + 2C . (II. 31) 
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Inserting the expressions of Eq. (IT. 13) and (11.16) and 
the form of Eq. (II. 7) for I/!(E, x), 0 "" E < 00, we find ex
plicitly that 

I/!.(k,x) = Cf.(k)t/>(k, x). 

III. ORTHOGONAL POLYNOMIALS AND THE 
MOMENT PROBLEM 

(11.32) 

Let us collect some well known properties of ortho
gonal polynomials. 7 

Suppose we are given some nondecreasing function 
P(A) defined on the real axis. We are to find polynomials 
I/J(A, n) such that 

(i) I/!(A, n) is a polynomial of exact degree n and its 
leading coefficient is positive. 

(ii) The orthonormality relations hold: 

f_: I/!(A, n)I/!(A, m) dp(A) = o(m, n). (III. 1) 

The construction is a straightforward application of the 
Hilbert-Schmidt procedure. Indeed, if we denote the 
moments of p by 8 m, i. e. , 

(III. 2) 

the result is 

8 0 8 1 ••• 8 n 
8 1 8 2 , •• 8 n•1 1 

I/!(A,n) = ~ •.••...•.••.••.• , n=1,2,3,'" , 
n-1 n 8 n_1 8 n 8 2n- 1 

1 A ••• An 

(ITI. 3) 

where 

8 0 8 1 • " 8 n 

D = 8 1 82 • •• 8 n• 1 
n •••••••••••••••• (III. 4) 

[The Eq. (III. 3) also holds for n;;. 0 provided we define 
D_t as (80)2. ] From this explicit result it is readily 
shown that these polynomials satisfy the three term 
recursion relation 

a{n + 1)I/!{A, n + 1) + b(n)l/J{A, n) +a(n)I/!(X, n -1) 

=AI/!{A,n), n=1,2,3···, 

where 

b(n) = f_: AzfJ2(A, n) dp(A) 

and 

a(n + 1) = f '" AI/!{A, n)I/!(A, n + 1) dp(A), bao 
or more explicitly 

(III. 5) 

(Ill. 6) 

a(n+1)=.JDn.1Dn_tlD~. (Ill. 7) 

We note that Eq. (Ill. 5) also holds for n = 0 provided we 
define a(O)I/!(A, - 1) to be zero . 

Thus, in principle the procedure is so: Given p(A) we 
compute the moments sm. From Eq. (Ill. 3) we then have 
the I/!(A, n). In the inverse (moment) problem we are to 
find p given the moments. The usual discussion 7 of this 
problem makes considerable use of the polynomials 
I/!(A, n) and another set of polynomials Q(A, n) defined by 
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Q(' ) -1~ ¢(A, n) - ¢(A', n) dp(A') 
lI.,n - A- A' • 

-~ 

(III. 8) 

It may be noted that the Q(A, n) also satisfy Eq. (III. 5) 
for n"'- 1. 

IV. SCATTERING THEORY AND ORTHOGONAL 
POLYNOMIALS 

We take Eq. (III. 5) for n"'- 0 with the initial condition 
a(O)¢(A, - 1) = 0 and ¢(A, 0) = C = 1/v'So as fundamental for 
our discussion of orthogonal polynomials. Further, we 
restrict attention to the case when a(oo) and b(oo) exist 
and the limits are approached at least as fast as lin'!.. 
(As will be seen later this is the situation when the sup
port of dp(A) is compact. ) 

Denote as "regular" those solutions of Eq. (III. 5) with 
the given initial conditions which for a fixed A are bound
ed as n - 00. With the assumed conditions it is readily 
seen that such solutions exist for all A such that 

b(oo) - 2a(00) "" A"" b(oo) + 2a(00). (IV. 1) 

These solutions are conveniently described by z such 
that 

A = b(oo) +a(oo)(z +z-l]. (IV. 2) 

The statement then is that the Jacobi matrix formed 
from the a(n) , ben) has a continuous spectrum for A in 
the interval described by Eq. (IV. 1) or, alternatively, 
for z lying on the unit circle (z =el~. In addition, there 
may be some discrete eigenvalues AI corresponding to 
square summable solution of Eq. (III. 5). We will show 
that these eigenvalues are: 

(i) real 

(ii) simple, 

(iii) finite in number, and 

(iv) lie outside or at the edge of the continuum. 

(In z they are real and within the unit circle or at z 
= ± 1. ) These results imply that the peA) used to form our 
orthogonal polynomials has only a finite number of 
jumps outside the interval of Eq. (IV. 1) plus a continu
ous part in the interval. 

Some preliminaries: Let ¢(j)(A, n), ¢(Z)(A, n) be two 
solutions of Eq. (III. 5). Then we have the analog of the 
Wronskian theorem, namely 

w( ¢<1), ¢(2)] = a(n)( ¢<1)(A, n - 1)¢(2)(A, n) 

- ¢(Z)(A,n-1)¢(1)(A,n)] (IV. 3) 

is independent of n. Introduce two auxiliary solutions 
¢z of Eq. (III. 5) defined for I z I ~ 1 by the boundary 
conditions 

lim I ¢z - zzn I - O. (IV. 4) 
n-~ 

Further, use Eq. (III. 5) to definefz(z) as 

(IV. 5) 

(We choose to call f.(z) the Jost function since it will be 
seen to play the same role for the orthogonal poly
nomials as the functionf.(k) does for scattering theory.] 
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Some properties are obvious. On the unit circle 

¢.(z, n) = ¢ !(z, n) = ¢_(z-l, n). (IV. 6) 

Since the ¢z are linearly independent we can express 
the continuum regular solutions as linear combinations 
of them. USing the constancy of the "Wronskian" and 
the boundary conditions on ¢ and ¢z, we obtain 

¢(A, n) = ( )2~ . 0 (f.(z)¢.(z, n) - f.(z)¢.(z, n)], z = e'8. a 00 z sm 

(IV. 7) 

In particular, it may be noted that the linearly indepen
dent functions are obtained for z running over the upper 
half of the unit circle (i. e., 0"" 0 "" 7T). 

As in scattering theory the Jost function determines 
the asymptotic behavior of the continuum functions. 
Thus from Eq. (IV. 4) we see that as n - 00 

elf (z) I . 
¢(A n) - '. sm(nO + 0) , a(oo) smO ' (IV. 8) 

where 

0(0) = - argf.(z). 

Also as in Sec. II the zeros off.(z) (within or on the 
unit circle) determine the discrete eigenvalues. Thus if 
f.(z,) = 0, then 

¢(Ajz n) = C(¢.(z" n)/¢.(zjz 0)] (IV. 9) 

To investigate f.(z) further we can parallel the path of 
Sec. II and obtain "integral equations" for the functions 
l/Jz and l/J. For this purpose it is useful t~ transform Eq. 
(III. 5). Let us introduce a new function l/J(A, n) by 

~(A, n) = l/J(A, n)/Ig(n) 

where 

(i) limg(n) = I, 

(IV. 10) 

Then Eq. (III. 5) becomes 

a(oo)[~(A, n+ 1) + ~(A,n-1)]+ (b(oo) - Af¢(A,n) =y(n), 

(IV. 11) 

with 

yen) = [A(g(n) - 1) + b(oo) - b(n)g(n) ]~(A, n). (IV. 12) 

It is readily verified that an appropriate g(n) is 

(IV. 13) 

Then (using Green's functions) integral equations for the 
solutions of Eq. (IV. 11) for various boundary conditiQns 
can be immediately written down. For example, for l/J. 
we have 

- n" [zn-m _ Z (n-m)] 
l/J.(z,n)=z + L.; ()( _I) y(m) 

""'n.l a 00 z - z 
(IV. 14) 

where y(m) is as in Eq. (IV. 12) with ~ replaced by /f; •• 
Then by standard techniques we can use this equation to 
demonstrate that ~. (and thus l/J.) is analytic within the 
unit z circle and continuous on it. Thus, from the 
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definition 

f.(z) = [x - b(O) ]l/J.(z, 0) - a(l)l/J(z, 1) (IV. 15) 

we conclude that f.(z) is analytic within the unit circle 
except perhaps for a simple pole at z = O. The pole does 
indeed exist since from Eq. (IV. 14) or Eq. (III. 5) we 
can show that for small z 

~ a(oo) 
l/J.(z, n) "'zn IT -(--') • 

1=1a n+t 
(IV. 16) 

Then from (IV. 15) we conclude that the residue off.(z) 
at z = 0 is 

~ a(oo) 
a(oo) IT --. ;< O. 

1=1 a(t) 
(IV. 17) 

The analyticity of f. implies only a finite number of 
zeros there. Hence follows our statement that there are 
only a finite number of discrete XI. On the unit circle a 
zero off. is by Eq. (IV. 6), also a zero off •• Then 
l/J(X, n) given by Eq. (IV. 7), is identically zero-unless 
the denominator also vanishes. Thus, in addition to the 
finite number of discrete zl in the unit circle, there are 
at most zeros at z = ± 1. 

The analytic properties of the functions l/J(X, n) which 
satisfy Eq. (III. 5) and the initial conditions a(0)1/I(X, - 1) 
= 0, 1/I(X, 0) = C are even simpler to obtain. Since 1/I(X, n) 
is a polynomial of order n in X it is analytic in z within 
the unit circle except for a possible pole at z = O. Direct 
calculation for small z yields 

n a(oo) 
1/I(X, n) "'Cz·n fI -(.) . 

101 at 
(IV. 17') 

Further, information is obtained from the discrete 
form of Green's identity. Thus let 1/I(1)(X, n), 1/1(2) (X' ,n) 
be any two solutions of Eq. (1lI.5). Familiar manipula
tion yields 

N 
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(IV. 21) 

In particular, this shows (df j dXhl ;< O-and hence the 
zeros of f. (and hence the XI) are simple. 

Obviously, also if XI ;< XJ the sum of the products 
1/1* (XI, n)1/I(Xjo n) are zero, i. e. , 

(IV. 22) 

Finally, in Eq. (IV. 17) let 1/1(1) and 1/1(2) be two of the 
regular solutions of the continuum. The terms on the 
right for n = 0 vanish in virtue of the initial conditions. 
For N large we can use Eq. (IV. 8) to evaluate the con
tribution from the upper limit. The result is 

~ Ii(X - X') 
~ 1/I(X, n)1/I(X', n) = p'(X) , X, X'e continuum (IV. 23) 

where 

p'(X) = a(oo) sinO/1TC2If. 12 

Two things may be noted: 

(IV. 24) 

(1) Equations (IV. 23) and (IV. 22) together with the 
obvious relation 

t l/J(X
h 

n)1/I(X', n) = 0 {XI ~ discrete .eigenvalue, (IV. 25) 
n=0 X' m the contmuum, 

though derived as orthogonality relations are actually 
the completeness theorem for the polynomials. 

(2) The notation is intentional. It will now be shown 
that the p; and p' are indeed related to the weight func
tion p(X) used to define the polynomials. 

ConSider 

1= 2~i J G(X,n;m)dX, (IV. 26) 

(X- X') ~ 1/I(1)(X,n)1/I(2)(X',n) where 

= a(N + 1)(1/I(2)(X', N) 1/1(1) (X, N + 1) _ 1/1(1) (X, N)1/I(2)(X', N + 1)] G(X, n;m) =- 1/I(X, n)l/J.(X, m), n ~ m 

+a(O)[1/I<il(X, -1)l/J(2)(x" 0) - 1/I(2)(X', -1)I/'(1)(X', 0)]. 

(IV. 18) 

Suppose first X= X; (one of the discrete eigenvalues) 
and x' = xt. The right-hand side of Eq. (IV. 17) vanishes 
as N - 00 in virtue of the assumed summability of 
I/'(XI, n) and the initial conditions 

~ 

:. ImX; ~ II/'(X;, n) 12 = o. 
n=O 

The XI are real. [We therefore can choose the I/'(XI, n) to 
be real.] 

Second, let X=X;, I/'<!)= I/'(X;,n) and 1/'(2)(X',n) = I/'.(X',n). 
Letting N - 00 and using the boundary conditions yields 

~ f.(X')C 
~ I/'(X;, n)I/'.(X', n) = ~ . 
n=O " - "I 

(IV. 19) 

Passing to the limit X' - XI and using Eq. (IV. 9), we see 
that 

~ 

~ II/'(Xj,n)12=1/po 
n=0 

(IV. 20) 

where 
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Here the path in X is such that z goes around the unit 
circle. This integral may be expressed in two ways. 
One is to write it in terms of an integral over X between 
b(oo) - 2a(00) and b(oo) + 2a(00). Alternately, it can be 
evaluated by residues. The resulting identity is 

f.= I/'(X, n)I/'(X, m) dp(X) = Ii(n, m), 

where 

dp(X) = p'(X) dX, b(oo) - 2a(00) ~ X ~ b(oo) + 2(00) 

=~ PIIi(X- XI)dX, X not as above. 
I 

(IV. 28) 

Here the p' and PI are indeed as given by Eqs. (IV. 24) 
and (IV. 22). 

Thus we have seen that the weight function for our 
orthogonal polynomials is closely related to function f. 
which determined many of the properties of the poly
nomials. Thus: 

(i) The values of f. on the unit circle determine the 
continuous part of the weight function [p'(X)] by means 
of Eq. (IV. 24). 
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(ii) These values of f+ also determine the number of 
jump points AI' Indeed, by the principle of the argu
ment, the change in phase of f+ as one goes around the 
unit circle is 21T(N -1) where N is the number of zeros 
off+ within theunit circle (the discrete eigenvalues). 
The 1 is due to the simple pole at the origin, 8 i. e. , 

AI5 = - 21T(N -1). 

(We recognize a discrete version of Levinson's 
theorem. 4) 

(IV. 29) 

(iii) The actual position of the zeros of f+ within the 
unit circle determine the Ai' 

However, in the theory of orthogonal polynomials the 
problem must be turned around. There ptA) is given and 
f+ should be found. This can be done using a version of 
the Poisson-Jensen formula. Thus suppose we have a 
function h(z) with the properties: 

(i) h(z) is analytic within and continuous on the unit 
circle; 

(ii) h(z) is real, i. e., h*(z) =h(z*); 

(iii) h(O) is real. 

Then there is a representation of the form 

h(Z)=.l..l" h (1 B){eXp(~8')+Z)dB' Izl <1. (IV. 30) 
21T _" r , \exp(zB') - z ' 

It may be noted from what has been stated previously 
one can choose 

(IV. 31) 

The requirements are satisfied. (Here TI,,, means prod
ucts over all Zi in the unit circle subject to Zi ~ O. ) 
Therefore, 

! () 
TI+ (z - z)TI.(z -Zj) 1 z - exp--

+ - Z TIl (1 - ZIZ) 21T 

x [' lnl! (8') I (exp(!B') +z) dB'. 
lor + (exp(zB') - z) 

Here we have simplified using 

Iz'l =1= 11-zlz'l/l z i- z 'l. 

(IV. 32) 

It is illuminating to express the integral here in 
terms of the variables 

A' = b(oo) + 2a(00) cosB' 

and 

A= b(oo) + a (oo)(z +z-l). 

We then find 

with 

_ z - z-1 [DC=)+2aC=) In If (A') IdA' 
1- 21T Jb(=)-2a(=) sinB'(A' - A) . 

(IV. 33) 

Now from Eq. (IV. 24) we see that for the range of in
tegration indicated here 

(IV. 34) 
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and therefore 

(z - z-l) 1 b(=)+2a(=) dA' 
1=- , , 

41T b(~)-2a(=) sinB (A - A) 

x In( 1TC2p' (A'>! a( 00) sinB']. (IV. 35) 

Thus Eqs. (IV. 33) and (IV. 35) give the Jost function ex
plicitly in terms of the continuous part of the weight 
function and the position of its jumps. 

It may be noted that the construction here is very 
similar to that encountered in the discrete inverse 
scattering problem. 1 Here we have constructed f+ given 
its absolute value in the continuous range and the posi
tion of the discrete eigenvalues. There the problem is 
to construct f+ from argf+ in the continuous range and 
the position of the discrete eigenvalues. 

Finally, to compare with the usual treatment of ortho
gonal polynomials let us determine the relation of the 
functions 1/1+ to "associated functions" t/>(A, n) where 

d..(' )=1= I/I(A', n) dp(A') >--1 
'f' "-, n A _ A' ,n ~ . 

_00 

(IV. 36) 

(Note that this implies t/>(A, - 1) == o. ] It is readily veri
fied that in virtue of the recursion formula for I/I(A, n) 
and the initial conditions that 

a(n + 1)t/>(A, n + 1) + b(n)t/>(A, n) + a(n) t/> (A, n - 1) 

= At/> (A, n) + l5(n, O)/C, n? O. (IV. 37) 

Thus for n? I the t/>(A, n) satisfy exactly the same three 
term recursion relation as do the I/I(A, n) and I/I,,(A, n). 

Consider 

I ,( I/I+(z') dz' (z' - ZI-l] 
J(z) = 21Ti 1: f+(z') 7 (z' +Z'-1 - (z +z-l)] • (IV. 38) 

(Here c is the unit circle, ) Introducing variables A' and 
A as before, we can (using the results obtained pre
viously) rewrite this as _ i D<=)+2a<=) I/I(A',n)p'(A')dA' 

J(z)-C ,. 
b(=)-2a(=) A - A 

On the other hand, J(z) can be evaluated using 
Cauchy's theorem. The integrand is analytic except for 
simple poles at the zeros of f+ and at z' = z. The re
sulting identity then gives the relation 

(IV. 39) 

V. APPLICATIONS 
A. Asymptotic formulas 

We are now in a position to answer the following ques
tion. Given p(A) what is the behavior for large n of the 
appropriately constructed polynomials? Using Eq. 
(IV. 33) we constructf+. The asymptotic behavior is then 
obtained from Eq. (IV.8). 

As a very simple example let us consider the 
Legendre polynomials. Then 

dp(A) = dA, - 1 <f A <f I 

=0, IAI>I. (V. I) 

Thus the Pi are zero-no discrete jump points. Also, 

b(oo) - 2a(00) = - 1 
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and 

b(oo) + 2a(00) = + 1. (V. 2) 

Therefore, 

b(oo) = 0, a(oo) = t. (V. 3) 

Further, 

C = l/.;y:::dp(A) = 1/12. (V. 4) 

The Eq. (IV. 33) becomes 

f (z) =z-1 e l(z _Z-1) f1In[~/7T]dA') 
• xp~ 41T -1 v'1- A'2 (A' - A) 

A= (z +z-f)j2, (V. 5) 

or 

f.(z) = [(z-2 - 1)/21T ]1/2. (V. 6) 

Inserting in Eq. (IV. 8) then gives 

l/J(A, n) _(~)112 cos[(n+ 1/2)e -1T/4], 
1Tsm" 

(V. 7) 

which is the conventional result when we recognize that 
our polynomials are normalized, i. e. , 

l/J(A, n) = v'(2n + 1)j2Pn(A) , (V. 8) 

where Pn(A) are the ordinary Legendre polynomials. 

Asymptotic formulas for the associated functions are 
also readily found. This is done by inserting the 
asymptotic formula of Eq. (IV. 8) into the definition of 
Eq. (IV. 36). In the present example 

(V. 9) 

where Qn(A) are the usual associated Legendre functions. 
Our procedure then gives the usual asymptotic formulae 
for the Qn. 

B. Sum rules 

From the explicit expression for f. in terms of p' we 
can obtain a number of identities which the coefficients 
a(n), ben) satisfy. Thus suppose we expandf.(z) in a 
Laurent series around the origin. We know this has the 
form 

(V. 10) 

From Eq. (IV. 33) we obtain explicit expressions for the 
C, in terms of the z, and various moments of lnp'. On 
the other hand, starting with either Eq. (IV. 14) or the 
r-.ec.ursion relation plus boundary conditions, we can 
calculate the C, in terms of the a(n) and ben). Thus Eq. 
(IV. 17) tells us that 

... a(oo) 
C -1 = a(oo) D1 a(i) • 

But expanding Eq. (IV. 33) for small z gives 

1 b( ... ) .2.( ... ) dA' In1TC2p' (A')/a (00) Sine') 
x . 8' . 

b ("") -20("') Sln 

(V.ll) 

(V. 12) 

Equating the expressions in Eqs. (V.ll) and (V. 12) then 
gives D7=1 a(i) in terms of the Zj and an integral of 
lnp' (A'). 
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As an· example again consider the Legendre poly
nomials. Then from Eq. (V. 6) 

C -1 = (21T)"1/2. 

From (V.ll) we then have [since a(oo)= 1/2]. 

(21T)"1/2= ~ ~ 1/[2a(i)]. 
1 =1 

(V. 13) 

(V. 14) 

Of course, since we know the a(i) for the Legendre 
case we can check this directly. Thus 

2a(n)=n/..f(n2-l/4) (V. 15) 

and Eq. (V. 14) is the identity 

(21Tr1/2= .!. Ii ..fn2 -1/4 
2 n=1 n (V. 16) 

The coefficient Co can also be calculated directly with 
the result 

(V .17) 

From Eq. (IV. 33) we find the constant term in the 
Laurent expansion. This combined with Eq. (V. 17) then 
gives L:7=ob'(i) in terms of integrals of lnp' and the Zi' 

We note that in many cases, for example the Legendre 
polynomials, this particular identity is trivial. Indeed, 
if dp(A)=dp(-A) then the b(n)=O andf.(z) has a Laurent 
expansion in odd powers of z only. Our identity here is 
merely that zero equals zero. 

In the case 

ben) =0 (V. 18) 

let us proceed to calculate Cl' We obtain 

-=.l - _ - In -,--i-~::-: C 11' (C2p'(A'») 
COl - 1T 0 a (00 ) sine' 

cos28' de'. (V. 19) 

[Here A' =a(oo) cose'.] 

Again as an example we consider the Legendre case. 
Then from (V. 19) or even more simply by expanding 
(V. 6), we obtain C/Co l = -1/2. 

1 ... ( a 2(i») :'-2=~l 1-a 2(00) • (V. 20) 

In terms of the known values of the coefficients this is 
the identity 

--=6 1- 2 , 
1 ... ( n2) 
2 n=l n -1/4 

(V.21) 

which, of course, can be verified directly. 

It may be remarked that the sum rules involving Co 
and C1 are the direct analog of the sum rule given by 
Eq. (II.29). Indeed, by an appropriate limiting pro
cedure one can pass from either of the present sum 
rules to Eq. (II. 29). 

C. Szego-Kac formulas 

Szeg09 has given formulas for the determinants of 
Toeplitz matrices. Kac has given some generaliza
tions. 10 Here we show that the present formalism very 
readily yields analogous results for the determinants 
(Dn) of the Hankel forms described in Sec. Ill. Indeed, 
the result is merely a rewording of the first sum rule 
discussed in that section. 
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We want to discuss the behavior of the Dn of Sec. ill 
in the limit n - co. 

Rewriting our previous results, we have 

. () (Il+Zj)TI_(- ZI) 
R = hm z/. Z = 1/2 expI, 

~-o ~ 

with 

1 (r (C 2p/) I 

I=-2~ Jo In a(oo) de. 

Alternately, Eq. (IV. 17) tells us that 

."1 a(oo) 
R=a(co)ll -(.) • 

Let 

1=1 a z 

n a (00) 
R(n)=a(oo)TI -(.) 

i=1 a z 

[Then R =R(oo).] 

As has been noted [Eq. (III. 7)J 

a (n) =..) DnDn-2 !Dn-1Dn-l" 

Thus 

R (n) =an+
1(00)")Dn_/DaDn' 

From this we readily conclude that 

(V. 22) 

(V. 23) 

(V. 24) 

(V.25) 

(V. 26) 

This is just the analog for our present problem of the 
Szego formula for Toeplitz forms. 

VI. REMAAKS ON THE MOMENT PROBLEM 

Since as indicated earlier there is a close connection 
between orthogonal polynomials and the moment 
problem it may be useful to see what can be said in the 
present context. 

The problem we conSider is the following: Suppose 
we are given the moments of a distribution function 
peA). Further, p'(A) is continuous over a given finite 
segment of the real axis. It may in addition have jumps 
at a finite number of fixed pOints outside that interval. 
What is peA)? We assume the necessary and sufficient 
conditions on the moments are satisfied so that a solu
tion exists. 7 (In the present case it is then also 
unique. 7) 

It is then easiest to write down the solution and verify 
it by inspection. Thus suppose we have a weight function 
UtA) with precisely the desired points of support. Let 
¢O(A,n) be the corresponding orthogonal polynomials. 
(Later we indicate how to construct such. ) The solution 
of the problem is clearly 

(VIol) 

Further, if the sum over n is restricted to terms up 
to N, the same formula gives a solution to the re
stricted moment problem-i. e., to determine a peA) 
which will have a prescribed first N moments. 

As a trivial example let us consider the following: 
There are no jump pOints and the interval is between 
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An dp(A) =-- , i l 1 

-1 n + 1 
n even, 

=0 n Odd. 

Choose 

U(A) = 0, A<-1, 

=~l~ ..)1-u2 du, -1~A~1, 
~ -1 

=1, A>1. 

2173 

(VI. 2) 

(VI. 3) 

Since this is the weight function for the Tchebycheff 
polynomials of the second kind we have 

"-O( )_sin(n+l)O 0 
'I-' A,n - sinO ,A=COS. 

Then 

I I O( ) 2 
¢ A,n =-+1' n even 

-1 n 

=0, n odd, 

Therefore, 

dp(A) = 0, 

But 

" 4 sin(n +_1)0 == dA L1 - ---,"::":---:-;-'-
neTen~ (n+l) 

2; ! sin(n +l)e 
neven~ n+1 

A<-1 

A> 1. 

(VI.4) 

(VI,5) 

is just the Fourier sine series for the function which is 
1 in the interval ° < e < ~ . 

:.dp(A)=dA, -1<A<1, 

= 0, otherwise 

(as of course we knew beforehand). 

How do we construct an appropriate UtA) and the 
associated ¢O(A, n)? 

(VI. 6) 

First suppose there are no jump points and the inter
val is -1 ~ A ~ 1. The Legendre weight function a'(A)== 1 
and the associated normalized Legendre polynomials is 
one possibility. A second is the weight function U'(A) 
== (2/ ~ )..)1 - A 2 and the associated Tchebycheff poly
nomials sin(n + 1)O/sinO. 

If there are no jumps but the interval is other than 
- 1 to + 1, we can, with appropriate translation and 
stretching of coordinates, still use the Legendre or 
Tchebycheff polynomials. 

Finally, to include discrete jump points we use the 
discrete form of the Gelfand-Levitan equation. 1 

Let <T(A), (iJ°(A,n) be appropriate quantities just for the 
continuous interval. We extend a(;\) to an appropriate 
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function a(x) which includes the jumps by writing 

da(x) = du(X), X in the continuum 
(VI. 7) 

Here the a j are arbitrary positive constants. What are 
the corresponding ¢o(X,n)? Note that these are to be 
polynomials orthogonal with weight a(x). As such they 
can be constructed by the Hilbert-Schmidt procedure 
from the linearly independent polynomials ¢o{X,n). 
Thus there are constants K{n, m) such that 

" ¢o(X,n) =6 K(n, m)q>o(X, m). 
m=O 

(VI.8) 

The requirement that the 1f>0(X, n) are orthogonal poly
nomials means they are orthogonal to all polynomials 
of lower order. In particular, 

[ ¢O(X,n)q>o(X,m)da(X)=O, n>m. (VI.9) 

The normalization condition on the ¢O(X, n) is 

f: ¢O(X, n)2 da(X) = 1. (VI. 10) 

Inserting the expansion of Eq. (VI. 8) into Eqs. (VI. 9) 
and (VI .10) yields the "discrete Gelfand-Levitan 
equations"l: 

"-1 
K(n, m) + g(n, m) + 6 K(n, l)g(l, m) = 0 (n > m) (VI.11) 

1=0 

and 

1 "-1 
K( )2 =1 +g{n,n) + 6 K(n,l)g(l,n) 

n,n 1=0 
{VI. 12) 

where 

K(n, m) =K(n, m)/K(n, n) 

and 

g(n, m) = [ q>o(X, n)q>o(X, m) d[a(x) - <7(X)] 

Having chosen da(X) as in Eq. (VI. 7) makes g{n,m) 
rather simple. Indeed, 

(VI.13) 

The procedure then is so: Having specified <7(X) we have 
the q>0. Choos ing aj we have g{n, m). Then Eq. (VI. 11 ) 
is solved for K(n, m). From the Eq. (VI. 12) determine 
K(n,n)(> 0) and henceK(n,m). The ¢o then follow from 
(VI. 8). This procedure is not as complicated as one 
might think. We illustrate with an example. 

Suppose the continuum is - 1 .; X .; 1. In addition there 
is to be a Single jump point at XI (I xII> 1). We choose 

dU(X) = !,;r=-x2 dX, I X I .; 1 
1f 

(VI. 14) 
=0, Ixi > 1. 

The q)O(Xjn) are then sin(n+1)9/sin8, X=cos8. Choose 
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a positive constant a1 • From Eq. (VI.13) 

g(n, m) = a1 q)O(x1 , n)q)O(x1 , n). 
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The solutions of the resulting Gelfand-Levitan equations 
are 

(VI.15) 

and 

(Here cJ;o denotes the derivative with respect to X. ) 

VII. CONCLUSIONS 

It is hoped that it has been demonstrated that there is 
a very close parallel between the theory of orthogonal 
polynomials and scattering theory. In both a fundamen
tal role is played by the value of a particular solution 
of the basic (differential or difference) equation. We 
have called this the Jost function in both cases. Under 
fairly general conditions this function has simple 
analytic properties. It determines the asymptotic be
havior of the solutions of our equations and the contin
uous part of the spectral (weight) function. Conversely, 
the asymptotic phases plus the position of the bound 
states uump points) determines the Jost function. AL
ternatively, an explicit expression for the Jost function 
can be written in terms of the spectral (weight) 
function. 

We would like to stress that this is more than an 
analogy. Every result we have obtained for orthogonal 
polynomials of the type considered here leads by an 
appropriate limiting procedure to a result in scattering 
theory. 
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The lattice Green's function G (2p ,0,0) for the face-centered cubic lattices, which was obtained by 
Inoue as a linear combination of the F 4 function of Appell, is shown to be expressible as the 
product of the p th derivatives of two complete elliptic integrals of the first kind. 

In a recent paper Inoue1 has demonstrated that the 
knowledge on G(2P, 0, 0) (P = 0 or positive integer) and 
G(2, 2,0) suffices to determine the entire family of the 
Green's function, G(l, m, n) (defined by Eq. (1) below] 
for the face- centered cubic lattices. Based on this ob
servation she concentrated on G(2P, 0, 0) and evaluated 
it as a linear combination of finite number of F4 func
tions of Appell. 

In this paper we would like to show that her final re
sult for G(2P, 0, 0) can be expressed as a simple product 
of the pth derivatives of two complete elliptic integrals 
of the first kind. 

The case for l = 2P, m = n = 0 of the Green's function 
G(l, m, n) for the face-centered cubic lattices, defined 
by 

G(l, m, n) = ;3 flo! 
coslx cosmy cosnz 

E - il5 - cosx cosy - cosx cosz - cosy cosz ' 

has been evaluated (for E> 3) by Inoue as 

1 
G(2P, 0,0) = 22P(1 + E)I+P12p 12p 1 

P P-i i 
L; L; L; ct:i~ I 
i=O ".=0 ".'=0 

(1) 

XF4(J.I. +1; J.L' +i;p- j +1,j + 1;X+, X.). (2) 

In Eq. (2), the coefficient C and the variables X", are 
given, respectively, by 

ctt/=(-1)i(~~/P-j)(1\ (1) (j,)(l) (1) 
J)\ J.L .2/". 2 p-i-'" J.L 2".. 2 i-".· (3) 

and 

(4) 

with the usual Pochhammer notation (a)n = r(a +n)jr(a). 

In order to achieve our goal we first note the follow
ing integral representation for F4 2: 

F 4(a;{3;y, y';~(1- T/), T/(1- m = r(a)r({3r~(;~(~lr(y' _ f3) 
1 

X f f dudvu"'-1 v 8-1(1_ ujY-",-1(1_ VjY'-8-1(1_ u~)"'-Y-"'-1 
o 

X (1 - VT/ )B-y.y·-1 

X (1 _ u ~ _ VT/) Y+'" -"'-B-1 

(Rea> 0, Re{3 > 0, Re(y - a) > 0, Re(y' - f3) > 0), (5) 

Then, by reinstating the r(a + n)/r(a) form for the sym
bol (a)n and by using Eq. (5) with X. = ~(1- T/) and X_ 
=T/(1- ~), we can rewrite the sums, which we will call 
S hereafter, of Eq. (2) as 

1 

S = (~~2 f f du du-1 /2V-1 /2(1_ u)"1 /2(1 _ v)"1 /2 

o 

X (1- ul;)-J>-1 /2(1_ VT/)-J>-1 /2(1_ u~ - VT/)" 

X t (_1)i(1- u)P-J(1- v)i L; 1 r(p 1. 1) 
J=O ". Il - J - Il + 

( 
u(1-u~) '\ L; 1 

X (1-u)(1-u~-vT/)} ".1 ll'lr(j-Il'+1) 

X ( v(1- VT/) )".. 
(1- v)(1 - u~ - VT/) 

If we use the relation 

(6) 

r(z + 1) = (_ l)n r(- z +n) ( 
r(z _ n + 1) r(- z) n = 0 or positive integer) 

(7) 

to rewrite 1/r(j - Il' + 1), the J.L' sum yields 

.!. L; (-& (_ v(1- v1]) )"., 
jl".' Il'! (1-v)(1-u~-vT/) 

(1- u~ - v1] +uv~)i 
(1 - v )1 (1 - u ~ - VT/)i • 

Analogously, the Il sum in Eq. (6) gives 

_1_ (1- u~ - v1] +uv1])"-i 
(p - j) 1 (1- u)I>-i(1- u~ - VT/)"-i • 

When Eqs. (8) and (9) are substituted into Eq. (6) it 
will be seen that the j sum is again of the same type 
(i. e., binomial) as for the Il' and Il sums, with the 
result 

[uv(T/- ~)]P 
p! (1-u~ - vT/)p 

Collecting the results found in the above, we obtain 
1 

s= (1J-7r~)PPl f f dudvuH / 2vp-l/2(1_u)"I/2(1_v)"I/2 

o 

(8) 

(9) 

(10) 

X (1 - u ~)"p-l /2 (1 - VT/)"P-1I2. (11) 

Since the u and v integrals of Eq. (11) are separable 
and each gives a 2Fl function, we have 
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If we note the relation 

we may further simplify the product of the two 2Fl'S of 
Eq. (12) as 

([(f)~]S (d~Y (d~r 2Fl (t t~) 2Fl (t ~;11) 
_ ( P! • ~)2 d"K(.f""€) dPK(,r:ry) 
- [(hJ2 11 d~P d'TJP' 

(13) 

where K(") stands for the complete elliptic integral of 
the first kind. 

Now we recall that ~ and 11 in the above expressions 
are to be determined from H1-1/) ==X+ and 1/(1- ~) ==X.o 

This means that they are to be identified with k; and k:, 
respectively, of Ref. 1, and hence 1/ - ~ is to be re
placed by 4El/2(1 + E)I/2/ (1 + E)2. 

With this value for 1/ - ~ we summarize our results, 
Eqs. (12) and (13), as 

G(2 00)- [(t)p]2 (t+P,t+P;k:) 
p" - (1 +E)2p+l(p!)2 2Fl 1 +P 
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x F (t+P,t+P;k:) (14) 
2 1 1 +P 

4 aPK(k+) aPK(kj 
== (1 +E)2p+l[11<t>p]2 d(k~)P d(k~Y' (15) 

That Eqs. (14) and (15) give identical result to that of 
Ref. 1 can readily be checked for P == ° and 1. Thus, for 
P == 0, they give [4/112(1 +E)]K(kJK(kJ which is Eq. 
(3. 17a) of Ref. 1. For this case we may of course go 
back to Eq. (2) which gives G(O, 0, 0) cx:F4(t;t;l, 1;X+,XJ. 
If we use Eq. (5) for this F 4, we find also that G(O, 0, 0) 
cx 2F 1(t, t;1;~hFl(t t;1;1/) cx:K(.f""€)K(,r:ry). For P == 1, Eq. 
(15) with the relation 

dK(k) E(k) K(k) 
'dk == kk,2 - -k- , 

where k,2 == 1 - k2 and E(k) stands for the complete 
elliptic integral of the second kind, yields 

4 (E(k+) K(k+») (E(kJ K(kJ ) 
(1 + E)3112kA k+(1- k;) - "k. k.(1 - k:) - T ' 
which coincides with Eq. (3. 17b) of Ref. 1. 

1M. Inoue. J. Math. Phys. 15, 704 (1974). 
2 A. Erdtllyi et al., Higher Transcendental Functions (McGraw
Hill, New York, 1953). Vol. I, p. 230. 



                                                                                                                                    

Statistical theory of effective electrical, thermal, and magnetic 
properties of random heterogeneous materials. III. Perturbation 
treatment of the effective permittivity in completely random 
heterogeneous materials 

Motoo Hori 

Department of Applied Physics, Tokyo Institute of Technology, Meguroku, Tokyo 152, Japan 

Fumiko Yonezawa 

Belfer Graduate School of Science, Yeshiva University, 2495 Amsterdam Avenue, New York, New York 10033 

Department of Applied Physics, Tokyo Institute of Technology, Meguroku, Tokyo 152, Japan 
(Received 28 December 1973) 

Perturbation expansion series are derived for the effective permittivity of completely random 
heterogeneous materials. The formulation is performed by regarding a completely random material as 
a limiting case of an isotropic cell material. It is emphasized that, in order to obtain a physically 
reasonable and mathematically correct result, the "exclusion effect" must be taken into account in 
the averaging procedure. Prescription for evaluating the perturbation coefficient of an arbitrary order 
is given and explicit forms of leading terms are presented. The results bear a wide variety of 
applications in calculating effective physical constants such as dielectric constant, magnetic 
permeability, electrical and thermal conductivity, and diffusion constant. It is mentioned that the idea 
and formulation in this article are important for more general approximations (to be studied in the 
succeeding Paper IV) especially in connection with the problem of electron localization in some 
disordered systems. 

1. INTRODUCTION 

This paper is a sequel to two previous papers, 1,2 

which will hereafter be referred to as I and II. In I, a 
general perturbation formulation was developed for the 
effective permittivity of random heterogeneous materi
als that are statistically homogeneous but not necessari
ly statistically isotropic. 3 Furthermore, the second
order and third-order perturbation terms were calcu
lated explicitly on the basis of the modified cell model. 
Unfortunately, however, it is difficult to evaluate high
er-order perturbation terms for cell materials. In II, 
therefore, we derived upper and lower bounds of the 
effective permittivity, taking account of the third-order 
perturbation effects. 4 The present and succeeding pa
pers5 (henceforth called III and IV, respectively) deal 
with the higher-order perturbation calculation for the 
effective permittivity of a completely random hetero
geneous material, which we shall regard as a limiting 
case of a spherical-cell material. 

Now, in order to explain effectively the purposes and 
meanings of our papers III and IV, let us briefly de
scribe the present status of research in this field. His
torically speaking, the problem of evaluating effective 
or overall properties of inhomogeneous systems has 
repeatedly attracted many authors not only in physics 
but also in various other fields6 and it is truly amazing 
to know that essentially the same idea or method has 
been reinvented and used quite independently by a num
ber of people in different fields. One of the typical ex
amples is the "effective-medium (EM) theory, " which 
we shall treat in N. In solid state physics, this is 
termed the coherent-potential approximation (CPA) 
which itself has been attained through various indepen
dent and rather different approaches. 7 In the study of 
classical mixtures, the EM theory is introduced to ob
tain the effective phYSical constants on the basis of the 
self-consistent local field concept. 8 In contrast to the 

2177 Journal of Mathematical Physics, Vol. 15, No. 12, December 1974 

theory of dilute suspensions, 9 the validity of the self
consistent method is not restricted to systems with low 
concentrations of inclUSions, but it may serve as a good 
apprOXimation for a whole range of the concentration. 

Recently classical treatments of random media have 
been brought into the spotlight in connection with the 
discussion of electron localization in some inhomogene
ous materials. 10 The EM theories especially are regard
ed as very useful apprOXimations for the study of overall 
physical properties in some parameter region of dis
ordered systems. 11,12 It is also pointed out that the EM 
theory for scalar conductivity, wonderfully as it works 
for some parameter regions, does not hold good near 
the critical percolation concentrations for a random 
mixture of conducting and insulating materials, 

In view of these facts, one of our purposes is to ob
serve a more direct relationship between the EM theory 
and the CPA, Although it has been mentioned that the 
fundamental philosophy characteriZing the EM theory is 
akin to that for the CPA, 6,11 there has been no detailed 
proof to show that the mathematical structures of both 
theories are identical. Since the validity of the CPA has 
been so well established, the equivalence between the 
EM theory and the CPA guarantees the usefulness of the 
EM theory. Another purpose of ours is to see whether 
we can improve the EM theory so that the results are 
also available near the critical concentration region. 
These purposes will be completed in N, where a proof 
of the above-described equivalence is given and an ap
proximation much better than the EM theory is pro
posed. Meanwhile, we give some preparatory formula
tions in this article, bearing these final aims in mind. 

Readers are not necessarily required to be acquainted 
with the preceding papers I and II. In Sec. 2, some brief 
review of I and II is given together with the explanation 
of notations and the formal expansion series of the ef- . 

Copyright © 1974 American Institute of Physics 2177 
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fective permittivity. In Sec. 3, we are mainly concerned 
with the perturbation methods for the effective permit
tivity in completely random media. A particular atten
tion is paid to the concept and importance of the" exclu
sion effect" in the process of evaluating the average of 
the perturbation terms. 13 We give a general prescription 
to construct the averaged perturbation terms of arbi
trary orders when the exclusion effects are adequately 
taken into account. The results are compared with 
Kroner's pertUrbation solution14

-
16 in which exclusion 

effect is neglected. Explicit forms of the first few 
terms in the perturbation series are obtained in Sec. 4. 
A summary and some preparatory remarks on the next 
paper IV are given in Sec. 5. It is suggested that the 
exclusion effect becomes significant especially when a 
partial summation of the perturbation series is em
ployed as an approximate solution to the effective per
mittivity. Detailed discussion of criteria for summing 
up some important terms in the perturbation series will 
be postponed until we have a thorough thought of it in 
IV. To readers who are not specifically interested in the 
detailed mathematical analyses, it is suggested to skip 
Secs. 2 to 4 and study the summary in Sec. 5 before 
they proceed to IV. 

It must be noted that, although all formulations in 
what follows are carried out in the language of dielec
tric constant, the whole argument and result hold right 
for any other kind of physical constant defined as a 
proportionality factor between a solenoidal vector and 
an irrotational vector. The problem of scalar conduc
tivity especially is of great physical interest. 

2. GENERAL FORMULATION AND PRELIMINARY 
RESULTS 

We consider a random heterogeneous material with 
spatially fluctuating permittivity €(r) subjected to a 
constant-average electric field. Assume that the medi
um is statistically homogeneous and its volume V is 
infinite. Statistical homogeneity means that all of the 
many-point moments of €(r) do not depend upon the 
absolute position of the points but only upon their rela
tive configuration. Denote ensemble averaging by the 
brackets ( > and let E:'(r) == E:(r) - (E:). Then we can write 

(€'(r1)E:'(ra) ••• €'(rnl> = (€'(O)E:'{r12) ••• €'(rln» 
:= (E:'")f(r12, r13, ... , r1n) == (€'n) g(r12' r 23, ... , rn_1,n), 

(2.1) 

where r IJ designates the relative position r i - r j and 
g{r12' r23' ... , rn_l.n) represents the normalized n-point 
correlation function of E:(r). 

As shown in I, the effective permittivity tensor lOti for 
such a heterogeneous material with homogeneous statis
tics may be expanded in a series of the form 

* - ( > (.: f; ( l)nA(n) (€'") ) 
lOU - E: Vii - n~ - Ii (E:)n ' (2.2) 

0iJ indicating the Kronecker delta. The nth-order per
turbation coefficient At;) is related to the n-point corre
lation function g(r12, r23, ... , r n_1.n) by 
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(2.3) 

Here, for example, dW12 is a volume element in the 
space of r12, and the summation convention has been 
employed. When the coordinate axes are chosen to coin
cide with the principal axes of lOt!. 

(2.4) 

Needless to say, E:f and A:n) are the eigenvalues of the 
tensors €fi and At;), respectively. 

For a statistically isotropiC medium the effective 
permittivity tensor E:f! reduces to a scalar E:* such that 

(2.5) 

and 

A (n):= i (- 4~) n-1 ;: dW12 j, dWa3'" Iv dWn_1.n 

o,,-lg(r12, r23, ••• , r 71-1 ,n) 
OX12,k OX23,h" • OXn_1.,,;1 

In particular, A (2) is given by 

(2.6) 

A (2)= __ 1_ r dW12 X12.~1 og(r12) =! (2.7) 
3 • 41T )v r12 OX12.1 3 

which is an immediate consequence of 

A (2) = _..! r dW12 Xl2., og(r12) = 1. 
H 41T J v r ll, OX12,i 

(2.8) 

Boundary conditions under which Eq. (2.8) holds are 
expressed in spherical coordinates as 

lim rI2 og(r12, 1.112, 1>12) := 0, 
Y12_oo orl2 

(2.9a) 

lim og(r12' 1.112,1>12) == 0, 
r12~" 01.112 

(2.9b) 

o. (2.9c) 

According to Miller, 17,18 a symmetric cell material 
is defined as a random multiphase material that satis
fies the following requirements: 

(i) The material space is completely covered by 
nonoverlapping cell; 

(ii) cells are distributed in a manner such that the 
material is statistically homogeneous; 

(iii) the material property E: of a cell is statistically 
independent of the material property of any other cell; 

(iv) the conditional probabilities of n points being and 
n' points not being in the same cell of a particular ma
terial, given that one point is in a cell of that material, 
are the same for each material. 

Henceforth we shall restrict ourselves to a symmetric 
cell material composed of cells of uniform shape, size, 
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and orientation. The independence hypothesis (iii) as
serts that the two-point moment (€ '(rl)€ '(rz» vanishes 
whenever both of the points rl and rz are not contained 
in the same cell; that is, 

(2.10) 

where Perl> r z) stands for the probability that the two 
points rl and rz fall into the same cell. Likewise, if we 
denote by perl, rz, ra) the probability that all the pOints 
r l, rz, ra lie in the same cell, 

(€ '(r1)€ '(rz)€ '(rs» = (€ 13) g(rlZ, rzs) = (€ I3)P{rl> rz, r 3) . 

(2.11) 

Substitution of Eqs. (2.10) and (2.11) into Eq. (2.3) 
yields 

A (Z) _ ~ ( dw x 1Z,l oP(rb rz) 
ji - - 41T Iv lZ r 3 ax ' . lZ 1Z,J 

(2.12) 

(2.13) 

It was pointed out in I that the second-order and third
order perturbation coefficients may be represented as 
functions of the cell shape. Recall that Aj~) is equal to 
the magnetometric demagnetization tensor19

,20 of the 
cell. In terms of the point-function demagnetization ten
sorzo LjJ(r), we obtain 

A~7) ==.! r dwLlJ{r), (2.14) 
v Jv 

(2.15) 

v being the cell volume. When the medium consists of 
ellipsoidal cells, the point-function demagnetization ten
sor LiJ(r) becomes constant throughout the cell volume, 
so that 

(2.16) 

Especially, for an isotropic cell material comprising 
cells of spherical shape, 

A (2) == 1/3, A (3) = 1/9. (2.17) 

Higher-order perturbation coefficients are by far 
more difficult to compute than the second- or third
order perturbation coefficient. Take AW as an example. 
The four-point moment (€'(rlh:'(rz)€'{rS)€'(r4» assumes 
(€'4) when four points are in the same cell, (€~z when 
two pairs of points are in two different cells, and zero 
otherwise. Let perl' rz, r3' r4) be the probability that the 
points rl> rz, r s, r4 are in the same cell, perl> rz; r s, r 4) 
the probability that the two pairs of points, (rh rz) and 
(rs, r 4), are in two different cells, and so on. Then we 
have 

(€ '(rl)€ '(rz)€'(r3)€ '(r4» 

== (€ '4) g{rlZ, r 23, r 34) = (€ '4) perl' rz, r 3, r4) 

+ (€ 1Z)2[P(rh rz; r 3, r4) + perl' r 4; rz, r 3) 

+P{rl> r 3;rZ' r 4)]. (2.18) 

Consequently, AW can be separated into four parts 
as 
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(2.19) 

(2.20) 

A(4) =_ -1-1 dw J: dw i dw X 1Z,I X Z3 ,k X 34 ,h 
Z,li (41T) 3 lZ Z3 34 3 r 3 r 3 v V v r12 Z3 34 

X o3P(rl. rz; r s, r4) 
OX1Z,kOX23,hOX34,J' 

(2.22) 

A(4) = __ 1_ [dw (dw f dw X 1Z ,; XZ3 ,k X S4 ,h 
4,IJ (41T}3 Jv lZ Jv 23 V 34 r 1z3 rZ33 rS43 

X o3P(rl> r 3; rz, r4) 
OX1Z,kOXZ3,hOX34,J' 

(2.23) 

We notice that the probability perl> r z, r3, r4) concerns 
the geometry of a single cell, while the quantities like 
perl> rz; r 3, r4) refer to the mutual relation between dif
ferent cells. For this reason, A~;li is calculated analo
gously to An> or An>, provided that identical ellipsoidal 
cells are uniformly oriented. As expressions corre
sponding to Eqs. (2.16) and (2.17), we get 

A1!li == Llk LULhJ> 

A~4)== 1/27, 

(2.24) 

(2.25) 

the proof of which will be presented in Appendix A. On 
the contrary, it is practically impossible to determine 
Ai!li> A~!IJ' and A4~lJ exactly. In addition, Eqs. (2.24) 
and (2.25) are easily generalized to 

Atl! == ( - i1T) n-l Iv dW1Z !v dWZ3 ••• Iv dWn_l,n 

x X1Z,I XZ3 ,k ••• on-1p(rl> r z, ... , rn) 
r 123 r Z3

3 oX1Z ,k0XZ3 ,h ••• OXn_1,n;! 

== LjkLkh ••• LmJ [en - l)-fold product], (2.26) 

(2.27) 

In II we derived effective permittivity bounds in
volving the three-point correlation functions. For cell 
materials composed of ellipsoidal cells these bounds are 

*.,;() ( (L(i)(€'Z)/(€)Z}Z ) 
€I ~ € 1- LI(€IZ) /(€)2 + L~Il(€ 13) /(€) 3 , (2.28) 

€t;;. (1/€) {1-0_L(/)Z (1- (1/~)(€)r 
[ ( 1) (€ IZ)l l}_l 

x (1- 2L; + Lt/) 1- (1/€)(€) + (Li - L~i» (€)zJ , 

(2.29) 
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where L, signifies the depolarizing factor of the ellip
soid and the index (i) indicates no summation on i. The 
above inequalities are simplified for spherical-cell 
materials to 

(2.30) 

(2.31) 

3. COMPLETELY RANDOM MEDIA AND EXCLUSION 
EFFECT 

Now, as a prototype of classical mixtures, let us con
sider a completely random heterogeneous material or 
a perfectly disordered composite material. 14-16 By a 
completely random material we mean a random inhomo
geneous material in which physical constants at differ
ent pOints are statistically independent. For instance, 
the two-point moment (E:'(r1)E: '(rz)} becomes 

(E: '(r1)E: '(rz» = (E: 12) g(r1Z) = (10'2) 0r1Z' (3. 1) 

where 0rtz is a null function such that 

° _{1 for r1=rZ' (3.2) 
r1Z- 0 for r1*rZ' 

Similarly, 

(E:'(rl )E:'(rZ)E:'(r3» = (10'3) g(r1Z, rz3) =(10'3) 01'120I'Z3' 

(3.3) 

It should be noted that the completely random material 
is not only statistically homogeneous but also statisti
cally isotropic. 

This model of completely random mixtures has been 
proposed by Kroner14 to analyze the elastic behavior 
of composite materials. For later convenience, we re
phrase here Kroner's treatment in the language of the 
dielectric constant. Because of the statistical isotropy 
of the medium, Eq. (2.7) is valid for g(r12) = 01'12; 
namely, 

A(2)=_l r dW12 X12 ,; ~=.!. (3.4) 
41T J v r12 ax12,(O 3 

From Eq. (3.3) we find 

A (3) = _1_ r dw r dw X12,f X23 ,k a2o..12o..23 
(41T)2 Jv 12 Jv 23 r1z

3 r23
3 aX12,kaXZ3,IO 

= to'k ' tOkIO = t. 

Let us express the four-point moment as 

(E: '(r1) 10 '(r2)E: '(r3)E: '(r4» 

= (E: '4) g(r12' r Z3, r 34) = (E: '4) 0..12°1'23°1'34 

+ (E: 12)2( ° ° + ° ° + ° ° ) r1Z 1'34 1'14 rZ3 1'13 rZ4 ' 

and put 
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a3Or14 Or23 - 0 
aX12,kaX23,haXS4,J - , 

(3.7b) 

(3.7c) 

The assumptions (3.6) and (3.7) are exactly what 
Kroner implicitly used in obtaining his solution although 
he himself noticed this only later. 21 Insertion of Eq. 
(3.6) into Eq. (2.6) gives 

More generally, 

A In) = 1/3n-\ 

which leads to 

(3.8) 

(3.9) 

(3.10) 

A careful study of the above formulation of Kroner 
suggests that the following three steps must be 
reconsidered: 

(i) Equation (3.6) is not perfect because it neglects 
the" exclusion effect." For example, let us take the 
first term (E:'2)2Or1z0r34 iIi the parentheses on the right
hand side of Eq. (3.6). Since the case where the four 
points coincide is counted in the first term 
(E:'4)o..12o..Z30r34, this must be strictly excluded from any 
of the three terms in the parentheses in order to avoid 
overcounting. Accordingly, the above- mentioned term 
corresponds to the situation in which neither r1 nor ra 
is identical with r3 or r4' This condition is expressed 
by (1- Or23) and the corrected form of Eq. (3.6) is 
given by 

(E:'(r1)10 '(rz)E: '(rs)E: '(r4» 
= (E:'4)Or1Zor230r34 +(1012)2 [Or120r34(1- Or23) 

+ Or140r23(1- Or1z) + Or130r24(1- Or12) J. 
(3.11) 

By means of cumulants or semiinvariants, Eq. (3.11) 
is rewritten as 

(E:'(r1)E:'(r2)E: '(r3) 10 '(r4» = (E:4)Co..1Zor23o..34 

+ (E:2)~( Or12o..34 + Or14o..23 + o..130r24). 

(3.12) 

Here (E:2)c == (10'2) and (E:4)c = (10 '4) - 3(10'2)2 imply the 
second-order and fourth-order cumulants of E:(r), re
spectively. A similar care must be taken of the exclu
sion effect for any higher-order term and it is shown 
that the whole procedure is reduced to replacing mo
ments by the corresponding cumulants. This exclusion 
effect is exactly the crucial point which has led to the 
CPA through a diagram technique in the quantum me
chanics of disordered binary alloys. 13 

(ii) Although Eq. (3.7a) is easily proved to be true, 
it is not straightforward to see whether or not Eqs. 
(3.7b) and (3. 7c) hold. As we shall check later, there 
is some trouble concerning Eqs. (3.7b) and (3. 7c). 
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(iii) In the calculations of terms such as Eqs. (3.7a) 
to (3. 7c) where the derivatives of the null functions 0r 
are required, a careful treatment of 0r is necessary 
so that no ambiguity sneaks in to the formulation. Let 
0r be represented by 

(3.13) 

where 

I (r)= {1 for r<p, 
p 0 for r>p. 

(3.14) 

By way of explanation consider the third-order per
turbation coefficient and set 

(3. 15b) 

x oZIp12(r12) lP 13(1'i3) !P23(rZ3) 
OX12,k°X23 ,U) • (3. 15c) 

Formally we can write 

Or1Zo,.Z3 = o,.1Z0r1S = o,.1Z0r1S °1'Z3, (3.16) 

butA(3), AIS)', A(3)N do not always coincide with one 
another (see Sec. 4). 

For the purpose of avoiding these complications and 
dealing with the problem in a safer mathematical frame
work, we employ a slightly different point of view. Let 
us regard the completely random heterogeneous ma
terial as a special case of the symmetric cell material 
where constituting cells are of spherical shape and in
finitesimal size. In the limit as the cell radius tends 
to zero, we have 

P(rh r z) = Dr12, 

P(rh rZ, r 3) = °"12°1'23' 

P(rh r z, r 3, r 4)= 0r1zOrZS Dr34! 

P(rl> rZ; r3, r4) ='0"1ZorS4(1- 0rzs)' 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

P(r1, r4; r z, r3) = 0r14 151'2S(1- 151'1)' (3.21) 

P(rb r 3; r z, r 4) = Dr Dr (1- 0r ), (3.22) 13 Z4 12 
and so on, which enable us to evaluate A (n) for arbitrary 
n. Detailed calculation based on this idea will be car
ried out in the subsequent section. 

4. DETERMINATION OF LOW-ORDER PERTURBATION 
TERMS 

With those instructions given in Sec. 3, we shall first 
investigate the second-order perturbation coefficient 
A (2) for a completely random heterogeneous material. 
For a symmetric cell material consisting of spherical 
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cells, it has already been demonstrated that A (Z) is 
equal to t, irrespective of the cell size. Since the com
pletely random heterogeneous material is a limiting 
case of the isotropiC cell material, A (Z) = t applies also 
to the completely random case. The same result is 
attained by using Eqs (3.13) and (3.17) formally; that is, 

A (Z) - 1 1 d X1Zy 0 Or12 
--- W12 ---

41T v r12 OX1Z. (f) 

1· 1 Iv d X12., oIp12(r12) =- 1m -- wlZ 
P12~+O 3 ·41T v r123 OX1Z.! 

. 1 [. i r 
• = - 11m -3 4 dcf>12 de12 sme12 

P1Z~+O • 1T 0 .. ,0 

x ( .. drlZ dIp1Z(rlZ) 

10 dr12 

= 1/3. (4.1) 

Next let us deal with the third-order perturbation co
efficient A (3). For the sake of illustration, we calculate 
A (S) by three different methods described in Eqs. 
(3. 15a)-(3.15c). From Eq. (3. 15a) it follows that 

A (3) - l' 1 i d X1Z.! o!P1Z(r1Z) - 1m -4 W12 3 
P1Z ~·o 1T v r12 OX12." 

X 1· 1 1 d XZ3 ." oIpz3(r2s) 1m -4 W2S 3" 
P23 ~+O 1T v r23 uXZ3. (i) 

=A (lIlO,,, ·A (Z)15,,(o = 1/9. (4.2) 

This agrees with the correct value obtained by virtue of 
the cell model. On the other hand, the limits in Eqs. 
(3. 15b) and (3. 15c) depend upon the manner in which 
P1Z, P1S, PZ3 approach zero, so that A (3)' or A (S)" cannot 
be uniquely determined. 

In Appendix B we prove that 

J () - 1 i d X23 .! o!P13(rlS) 
P13 .fJ r12 - - 41T w2Srs oX 

v 23 23.} 

(4.3) 

where 

{
o for r12 < P13 

Cp13(r12) = 3/ S 
- P13 r1Z for r1Z > P1S, 

(4.4) 

D () _{1/3 for r1Z<P1S 
P13 ru - 3/ 3 

P13 3r1Z for r12 > Pt3' 
(4.5) 

Substituting Eqs. (4.3)-(4.5) into Eq. (3. 15b), we get 

Especially, when Pt2 = P13 = p, Eq. (4.6) reduces to 

A(3)'=1/9. 

(4.6) 

(4.7) 

Nevertheless, Eq. (3. 15c) does not produce A (3)"= 1/9 
even though we put P12 = P13 = P23 = p. 

In view of the results mentioned above, we shall 
evaluate A m in accordance with the following conven
tions: (i) Introduce Eqs. (3. 19)-(3.22) into Eqs. (2.20)
(2.23), and express A (4) in terms of 15"12' DriS' 15,,14' 151'23' 
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0..2" <\'34.; (ii) contract each product of o's to the simplest 
form with respect to r12, r23, r 34 and arrange the sub
scripts in order whenever possible; for example, use 

0r120..23 0..M instead o~ ~~!~Or140r23' 01'1201'1301'24' 
0..12°1'13 0..23 01'3,' etc., (Ill) replace o..w 01'13' ... by the 
characteristic functions [p(r12), [p(r13) , .•• having a 
common value of p; (iv) take the limits as p - + O. 

For convenience we rewrite Eq. (2.19) as 

A (')(€") =A~4)(€'4) + (A~4) + A~4) + Al4»(€ 12)2 

= B~4)(€4)c + (B~4) + B~4) + Bl4»(€2)~, 

where 

A~4)=B~4), 

A~4)=B~4) _ B~4), 

A~4) = B~4) _ B~4), 

Al') = Bl4) _ B~4). 

It is readily seen that 

A~4)=B~4) 

(4.8) 

(4.9) 

(4. 10) 

(4.11) 

(4.12) 

= - lim_l_ J: dw Iv dw i dw X12t1 X23 ,k X34,h 
p~<IQ (41T)3 12 23 34 r 3 r 3 r 3 v V V 12 23 34 

X o3Ip(r12)Ip(r23)Ip(r34) =~ (4.13) 
OX12,kOX23,hOX34,<I) 27' 

which is equivalent to Eq. (2.25) valid for a spherical
cell material. As to B~4), straightforward calculation 
shows 

Bm = - lim_1_ Iv dw !v dw !v dw X12,! X23 ,k X34"h 2 p _<IQ (41T)3 12 23 34 r 3 r 3 r 3 v V V 122334 

X o3Ip(r12)Ip(r34) = 0 (4.14) 
OX12,k OX23,hOX34,(!) , 

whence 

A~4) = - 1/27. 

To calculate A~4) we contract 01'14 01'23 as 

01'14 01'23 = °1'12"'23+1'34°1'23 = °r lZ+1' 34 °1'23; 

then 

(4.15) 

(4.16) 

B(') = -um-1-f dw IdW i dw X12 ,! x23 ,/l X34 ,h 3 p ~ <IQ (41T) 3 12 Z3 34 r 3 r 3 r 3 v V V 12 23 34 

X o3Ip(lrlZ+ r 341)[p(r23) (4.17) 
OX12,k OX23,h OX34,(i) . 

Proceeding in the same way as we derived Eqs. (2.36) 
and (2.38) of I, we have 

_1_ ( d ( d X12,! X34 ,h o2[p( I r12 + r 34 1) 
(41T)2 Jv W12}v W34 r123 r 343 OX12,k OX34,! 

- 1 [d !v d X l2 ,! X34 ,! a2
Ip( I r 12 + r 34 1) 

- (4 )2 W12 W34--3 3 0 0 
1T V V r12 r 34 Xl2,k X34,h 

=_~ ( dwXk alp(r) • (4.18) 
41T Jv r3 aXh 

Accordingly, 

B~4)= tA(Z)Okh .A(Z)Okh== 1/9, (4.19) 

AJ4) = 2/27. (4.20) 

In Appendix C it will be verified that B~4) == 1/9 can also 
be deduced without utilizing Eq. (4.16). 
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Finally, we are concerned with the numerical esti-
mation of B~4). By definition, 

B (4) . 1 fd l d Ld X12! XZ3 ,k ~ 
4 = - hm(4 )3 w12 Wzs W344 3 3 p-<IQ 1T Jf V V rlZ r Z3 r 34 

x a3Ip(r13)Ip(rZ4) 
aX12,kOX23,hOX34,(l ) 

= _lim..!... ( dw X23 ,k aJp,!k(rZ3)Jp,h(O(rZ3) 
p -+0 41T Jv 23 rZ33 OX23 ,h 

(4.21) 

Analogously to the derivation of Eq. (B11), we obtain 

1 i d X23 ,k <lJp,ik(r23)Jp,hi(r23) 
- W23--
41T v r233 OX23,h 

= ;1T J: ~::i (d~23 [Cp(r23) + Dp(r23)]2 

+ 2Cp(r23)[ Cp(r23) + 2Dp(r23 ) ]) 
r23 

= _ 1. + 2 (., Cp(r23)[Cp(rZ3) + 2Dp(r23)] dr
23

, 
9 Jo r23 

so that 

Bl4) = ..!... _ ~ Urn p6 r" dr23 = 0 
27 9 p-+O Jp r237 ' 

Al4) = - 1/27. 

(4.22) 

(4.23) 

(4.24) 

As a result, the fourth-order term in the perturbation 
series becomes 

(4.25) 

The procedure to calculate higher~order perturbation 
coefficients proceeds in like manner. For the five-point 
moment we have 

== (E: 15) 01'12°1'23°1'34°1"5 + (€I3)(E:'2)[ 01'12 0..23 0\'45(1- 01'3,) 

+ 01'1201'3401'45(1- 01'23) + 01'1201'2501'34(1- o..Z3) 

+ 01'14°1'45°1'23(1- 01'12) + 01'15 0rZ3 01'34 (1- 0rlZ) 

+ 01'12°1'24°1'35(1- 01'23) + 01'13 01'24 01'45(1- 01'12) 

+ 01'13 01'34 01'25(1- 01'12) + 01'14 01'23 01'35(1- 01'12) 

+ 01'1301'3501'24(1- OrlZ)]' (4.26) 

By the use of cumulants, Eq. (4. 26) is transformed into 

(E: '(r 1) E: '(r2) E: '(r3) E: '(r 4) € '(r5» 

= (€5)cOr120r230r340r45 + (€3)c(€2)Ao..120rZ3 0..45 + 0..120..340rU 

+ 01'12°1'25°1'34 + 0..140..45 °1'23 + 01'150..230..34 + 01'120..2,01'35 

+ 0..13 °1'24 °1'45 + 0..130..34°1'25 + 01'140..23 °1'35 + 0..130..35 °1'24]' 

(4.27) 

where (E:3)c= (E:'l) and (€5)c={€'5) -1o(€I3)(E:'2). The 
fifth-order perturbation coefficient is therefore given by 

11 
A (5)(€,5) =A~5)(€I5) + 2:) A~5)(€I3)(E:12) 

m-Z 

(4.28) 
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where 

(5)_{B~5) for m= 1, 
Am - ~5)_B~5) for 2<>m<> 11. 

In Appendix D we prove that 

B~5)= 1/81, 

B~5) = BJ5) == 0, 

B~5)=B~5)==B~5)= 1/27, 

B~5) == B~5) = B~5) = Bl&) = O. 

As for the last coefficient Bi~) corresponding to 

(4.29) 

(4.30a) 

(4.30b) 

(4.30c) 

(4.30d) 

or Or Or , we are not successful in determining it. In 13 35 24 
analogy to B~4), however, we assume that 

B~~)= O. 

Then, 

Af5
)= 1/81, 

A~5) ==AJ5) == - 1/81, 

Al5)==AJ5)==A~S)= 2/81, 

A~5)==AA5)= .. ·=AH)=-1/81. 

(4.30e) 

(4.31a) 

(4. 31b) 

(4. 31c) 

(4. 31d) 

Accordingly, the fifth-order perturbation term becomes 

(£15) (£5) +9(£3> (£~ (£'5) _ (£I3)(E:'~ A (5) - c c c - -'--"---r'.,....,-'--'---'-
(£)5 - (£)5 - (e:)5 (4.32) 

The effective permittivity £* of a completely random 
material is thus written in the form 

or 

£* _ 1- (£l)c + (£3)c _ (E:4)0 + 3(E:~~ 
(E:) - 3(E:)2 9(E:)3 27(E:)4 

+ (E: 5)c + 9(E:3>C(E:~c _ ... 
81(£)5 

E:* < E: '2) ( E: '3) ( E: '4) (E: '5) _ (E: 13)( E: '2) 
(E:) = 1- 3(E:)2 + 9(E:)3 - 27(£)4 + 81(£)5 

(4.33) 

(4.34) 

Up to the fourth order, the expression agrees with 
Kroner's formula (3.10). This agreement is due to the 
fact that A~4) + AJ4) + A~4) = 0 on the right-hand side of 
Eq. (4. 8) and is only accidental. The two formulations 
[Eqs. (3.10) and (4.34)] start to differ from each other 
at the fifth order; the higher the order of the term, the 
larger the discrepancy becomes. This discrepancy is 
absolutely serious when an infinite sum of the expan
sion series is required. 

In fact, it is easily checked that Eq. (3.10) cannot be 
used in the whole range of parameters. By way of illu
stration we consider the effective permittivity of a com
pletely random two-phase medium. Let the two con
stituents have permittivities E:1 and E:2 and occupy frac
tions of the total volume Vl and V2 = 1 - Vl' Then 
Kroner's formula reduces to 

E:*= [£2 + (E:l- E:z)vtl (1- 3(E:l- E:2)2 

x V1 (1- V1) ). (4 35) 
[ E:1 + 2E:2 + 2{ E:1 - E:2)vd[ 3E:a + 2( E:1 - E:a)vd . 

If E:1 - 00 or E:2 = 0, we have 

(4.36) 
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which fails to give a nonnegative solution for the concen
tration region Vl < 1/7. It should also be remarked that 
the power series in Eq. (3.10) is not convergent for 
V1 < 1/4. 

5. SUMMARY AND CONCLUDING REMARKS 

In this article, we have shown how the effective 
permittivity E:* of a completely random inhomogeneous 
material is calculated by the perturbation method. As 
usual, the procedure to be followed consists of the three 
steps: 

(i) Expand a local electric field E j (r) in a perturbation 
series; 

(ii) average in the ensemble sense each term of the 
expansion series of E:(r)E/(r); 

(iii) resum the averaged perturbation terms and de
termine the effective constant E:* defined by E:*(EI ) 

= (E:(r)Ej{r». 

Out of these three processes, the first two have been 
discussed in I and III. 

It is emphasized that the exclusion effect plays a very 
important role in the averaging process. This exclusion 
effect originates from the fact that physical quantities 
associated with different pOints are statistically inde
pendent in a completely random material and according
ly the average can be taken independently. When quanti
ties associated with two or more different points are 
considered for ensemble averaging, the possibility that 
some of these points coincide must be strictly excluded 
in the mathematical formulation. This is not a trivial 
problem because the neglect of the exclusion effect not 
only gives mathematically incorrect formulations but 
also results in physically unreasonable solutions. 

With the exclusion effect being taken into account, the 
prescription for evaluating the n-point moment 
(E:'(r1)E:'(ra) ... (E:'(rn» is described as follows: 

(i) Divide n variables rl> r a, ... , rn into m subsets (m 
< n) such that at least two variables are assigned to each 
subset. 

(ii) When III variables are allotted to the first subset, 
lIa to the second, and so on, calculate 

(5.1) 

where {11m} denotes the way of partitioning n variables 
into m subsets as indicated in the above. 

(iii) By means of a product of such null functions as 
Dr/

i
, express the condition that variables belonging to 

the same subset all COincide. The product must be con
structed so that the variable subscripts are arranged in 
order whenever possible [see the instruction (ii) in Sec. 
4]. Write the product of o's thus calculated as 
Fn{{v m};r1a, r23' ... , r n_1,n)' 

(iv) Determine the n-point moment through the 
relation 

< E:'(rl)E:'(ra) ... £'(rn» 

= [) Fn{{lIm}; r1a, r a3, ... , rn_1,n)«n, {II".}), 
(vm ) 

(5.2) 
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where the summation L{vml is taken over all possible 
partitions of n variables into subsets of at least two 
components. 

The effective permittivity E:* is obtained by substitut
ing Eq. (5.2) into Eq. (2.6). The result is represented 
as the sum of infinite perturbation terms in the form 

E:* = (E) +:t L{.mIB~:~)E(n, {vm}) (5.3) 
n-2 (_(E:»n-1 

with 

B\~~)= ~ (- i1ftli dW121 dW23 " .!vaWn_l,n 

x x12>! X23.k ..• on-1Fn({vm}; r12' r 23, ... r n_l;n) 
r 123 ra33 . oX1Z .... OX23.h··· OXn_l,n;1 • 

(5.4) 

As for the third step of resummation as mentioned at 
the beginning of this section, it is practically impossi
ble to sum up all the infinite terms in Eq. (5.3) because 
each perturbation term is written only formally and is 
not subject to summation. What is usually tried is to 
content oneself with a partial summation of the whole 
series and invoke that the partial sum serves as a good 
approximation when most important terms are picked 
up for the summation. Criteria for selecting important 
terms out of the right-hand side of Eq. (5.3) will be 
fully discussed in IV. 
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APPENDIX A 

Let us seek A1!:i and prove Eq. (2.24). In the same 
way as we got Eq. (I. 3.23), 

P(rl> r z, r 3, r 4) ==.!. (dwao1(rl0)I(rso)I(r40)' (A1) 
v Jv 

The integrand on the right is the product of the charac
teristic functions defined in Sec. 3B of I. Substitution of 
Eq. (A1) into Eq. (2.20) yields 

AtlJ == - (4
1

)3 (dWzo ( dw12jdW23 ( dW34 xu,; XZ3 ': 
11 v Jv ]v v }v r12 rZ3 

x x34th ol(rl0) o2I(r30)I(r 40) (A2) 
r 343 OXIZ,k OX23 ;h OX34.J • 

From Eq. (I. 3.13) it follows that 

LII..(rzo) = ~ ( dWI0 _O_(l.)OI(rl0) 
47r Jv OXI0,1 r12 OXI0,k 

== _ ~ ( dWIZ Xl?,; ol(rl0) . (A3) 
411 J v r12 OX12,k 

The point-function demagnetization tensor Lfk (r20) is 
constant within an ellipsoidal cell, so that 

A (4) - Llk fd l d fd X23 •k X34 h 1.!"J - -(4 )2 W20 WZ3 W34 3 4 
11 V v V V r ZS r34 

x o21(rso)I(r4o) 
OX23.h OX34.J . 
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Since 

P(rz, r 3, r4) == .!. !.dW2ol(r30)I(r40), 
v IJ 

Eqs. (2.13), (2.16), and (A4) lead to 

A (4) -L A(S)-L L L l,U - lk kJ - lk kh hi' 

which completes the proof of Eq. (2.24). 

APPENDIX B 

The integral appearing in Eq. (4. 3), 

J . (r ) = _ ~ [dW X23,i oIp13(rlS) 
P13,iJ 12 411' 23 r 3 aX ' v 23 ZS.J 

is an isotropic tensor and has the form 

2184 

(A5) 

(A6) 

(B1) 

(B2) 

(B3) 

For the evaluation of Cp13(rU) and DpI3(rlZ) choose r12 to 
lie along the X3 axis; then 

or13 Xl',' 
-- = ---=!! = COS013 = U13' 
OX1S.3 r l3 

From Eqs. (B1) and (B4) we obtain 

J ()- 1 f d ~ alp1S(rlS) 
"13,33 r12 - - 411' W13 r 3 AX v 23 13.S 

= - 4
1 12

• d/Pisl
l 

dU13 ( .. dr13 
11' 0 -1 Jo 

x r132u13(r13U13 - r12) dIp13(r13) 
(rl~+rl~- 2rlZr13uls)3/2 dr13 

ConSidering that 

I I U13(rlSU13 - r12) d 
_1 (rl~ + rl~ _ 2rUr13U13)312 U13 

_{- 4r13/3rl~ for r13 < r12, 
- 2/3rl~ for r13 > ru, 

Eq. (B5) becomes 

( 2 iru 3 ( 1 Jp13 ,33 ria) = 3r 3 r 13 dII'13 rlS) + s-IP13(r12) 
12 0 

== CpI3 (rU) + Dp1 /r12)' 

The solutions of Eqs. (B3) and (B7) are 

(B4) 

(B5) 

(B6) 

(B7) 

(BS) 
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(B9) 

Now we can confirm the validity of Eq. (4.6). Because 

aJp13,kl(r12) = (dCp13(r12) + dDp13(r12) + 2Cp13(r12)) X12,j , 

OX12,k dr12 dr12 r12 r12 

(B10) 

(Bll) 

Combination of Eqs. (3.l5b) and (Bll) gives 

A(3)'=1. _ ~ lim [OOIp12halcp13(r12) dr12' (B12) 
9 3 1'12,P13 ~+O 0 r12 

APPENDIX C 

K () 1 ( d (d X120i x34.h 
I',kh r23 = (4rr)2 Jv W 12 Jv W 34 r123 r343 

x 02Ip(r14) 

OX12.k OX34,l 

we may express BJ4) as 

(Cl) 

(4) l' 1 i d 1 d Iv d XU,l X23 ,k X34 ,h B3 = - 1m (4 )3 W12 W 23 W 34--3 --3 3 
p~+O rr v v v r12 r 23 rS4 

(C2) 

In a similar manner to that developed in Sec. 2C of I 
[see Eqs. (1.2.36)-(1.2.40)], Eq. (Cl) is transformed 
into 

K ( ) -l-id Ld x 12,j x34,; P kh r 23 = (4 )2 W 12 W 34--3 --3 , rr v v r12 r 34 

where r= r12 + rS4' Note that Eq. (C3), together with 
Eqs. (Bl) and (Cl), implies 

J (r) = - .1:..-1 dw X12d oJp,hl(r13) 
p ,kh 23 4rr 12 r 3 OX • 

V 12 12,k 
(C4) 

Making use of Eqs. (Ell), (C2), and (C3), we arrive at 
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= 1/9. (C5) 

APPENDIX D 

Equations (4.30a) and (4. 30b) are almost self-evident; 
for instance, 

(5) 1 i d id l d La X12.i X23 'k Bl = (4 )4 W 12 W 23 W 34 W45--3 --3 
7T V V V V r 12 r23 

x X34 ,h X45,I 0
4 

Or120r230r340r45 

r34
3 

r453 ClX12,kOX23,hOX34,ZOX45,(i) 

=A (2)6
lk 

·A (2)Okh·A (2)Ohz·A (2)OZ(0 = 1/81. (Dl) 

To prove Eqs. (4.30c) we employ 

o 0 6 = 0 6 0 (D2a) 
1'12 1'25 1'34 1'12 1'23+1'45 1'34' 

6 6 0 = 0 6 6 (D2b) 
1'14 1'45 r23 r12+r 34 r 45 r23' 

61'15 01'23 Or34 = 0r12+r 45 61'23 61'34' 

which lead to 

B~5) = B~5) = B~5) =A (2) B~4) = 1/27. 

Furthermore, it is readily seen that 

61'12 6r24 6r35 = 01'12 6r23 +r34 Or34+r45, 

o 0 0 =0 0 0 
r1S 1'24 1'45 r12+r 23 1'23+1'34 1'45' 

6 0 6 =6 0 6 
1"13 r 34 1'25 1'12+1'23 1'34 r23+r 45' 

o 0 0 =0 6 0 
r14 1'23 r35 r 12+r 34 r23 1'34+1'45' 

whence 

BJ5) = BJ5) = B~5) = IA5~ =A (2) B~4) = O. 

1M. Hori, J. Math. Phys. 14, 514 (1973). 
2M. Hori, J. Math. Phys. 14, 1942 (1973). 
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We consider the one-dimensional problem of a slab having a random index of refraction and 
illuminated from within by a point source. We compute the expected value and the fluctuations of 
both the total power and power flux. These quantities, which are functions of the slab width, source 
location, and observation point, are determined in the limit of weak refractive index fluctuations and 
large slab thickness. We I;ompare the expected values of total intensity and flux with the predictions 
of radiative transport theory. We also compare the results of both theories with numerical 
simulations. 

1. INTRODUCTION AND SUMMARY 

This work is a continuation and extension of previous 
work by us, 1 which we shall refer to as I in the text. Ex
cept in the derivations of Sec. 4, where we rely on some 
of the analysis developed in I, the description of the 
problem and the results are self-contained here. 

We consider a one-dimensional medium with a random 
index of refraction that fluctuates slightly from an ex
pected value of unity. This medium occupies the interval 
[0,1). The regions to the right of 1 and to the left of ° 
are assumed to have a constant index of refraction equal 
to one. A time -harmonic point source is located within 
the interval [0,1]. We are interested in the statistical 
properties of the resulting wave. field throughout the me
dium. More speCifically, we are interested in the mean 
value or expectation of the total power (intensity) of the 
waves, the expectation of the power flux and the fluctu
ations of the intensity and flux about their mean values. 

The formulation of the above as a transmission line 
problem was carried out in I, and it leads to the same 
mathematical considerations. This is also true for the 
propagation of the fundamental mode in a waveguide with 
random inhomogeneities. All computations presented in 
this work will deal with what was termed the matched 
case in I, i. e., the medium in the absence of random 
perturbations, has an index of refraction equal to unity 
everywhere on (- 00, 00). The extension of the new re
sults to the mismatched case, however, can be carried 
out without difficulty as we indicate in Sec. 4. 

We study the above problem in the asumptotic limit of 
weak fluctuations of the refractive index and large slab 
thicknesses. The fluctuations are characterized by a 
small parameter E while the thickness 1- 1/ E2. The wave
length in the unperturbed medium and the correlation 
length of the random inhomogeneities are assumed to be 
of order one relative to E. We shall refer to the asymp
totic limit as the diffusion limit. A formal description of 
this limit is given in Ref. 2. More mathematical de
scriptions are presented in Refs. 3, 4, while additional 
references are cited in Refs, 3, 4 and L References 5 
and 6 can be consulted for related information. 

Our results are the following. First, we compute in 
the diffusion limit the expectation of the total power or 
intensity of the wave field as a function of the scaled 

width of the slab of the random medium, the scaled 
source location and the scaled observation point. From 
this expression, in turn, we determine the expectation 
of the power flux. Thus, we generalize the results of I, 
wherein the source was located at the left end of the slab, 
1. e., radiation was incident from the left. This latter 
problem has also been treated by Gazaryan7 and Lang. 8 

Rubin9
•
10 has considered the analogous problem of wave 

propagation through a one-dimensional randomly dis
ordered crystal while Halperinll has also dealt with a 
similar problem in his calculation of the spectral den
sity for a particle in a one-dimensional random 
potentiaL 

Our second result is the computation in the diffusion 
limit of the fluctuations of the total power about its mean 
value as a function of the scaled slab width, scaled 
source location, and scaled observation point. We again 
use this expression to determine, as a special case, the 
fluctuations of the power flux. These quantities, which 
were not computed in I, provide important insights into 
the basic nature of wave propagation in random media. 
Marcuse12 has also computed power fluctuations but with
in the forward scattering approximation, and so his re
sults differ from ours. 

We compare our results for the expected total power 
with the predictions of radiative transport theory. This 
is a phenomenological theory, due to Schuster, 13 that 
leads to simple equations for the total intensity and flux 
of radiation through an inhomogeneous medium. As in I, 
we find discrepancies between the stochastic and trans
port theories and conclude that radiative transport theo
ry in one -dimension cannot be derived from a stochastic 
wave theory in the diffusion limit as one might expect 
from physical considerations (cf. references in I). Fur
thermore, intensity fluctuations in the interior can be so 
large as to render the mean intensity in the interior a 
relatively unimportant quantity. 

We also compare our results with the results of nu
merical simulations. The predictions of the stochastic 
theory for the mean value and fluctuations of both the 
total power and power flux are found to be in good agree
ment with the simulation data. 

Section 2 presents the formulation of the problem and 
a delineation of our results. Section 3 compares these 
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diffusion limit results both with those of radiative trans
port theory and the results of numerical simulations. 
Graphs are presented which illustrate the behavior of 
the quantities of interest; these graphs are discussed in 
Sec. 3. We also briefly indicate how our results can be 
applied to the case where the physical configuration re
mains fixed while frequency or wavenumber is permit
ted to vary. Section 4 presents a derivation of the re
sults. This derivation relies both upon theorems estab
lished in Refs. 3, 4 and also upon the formulation in 1. 
Therefore, some details are omitted. 

We take this opportunity to refer to the work of 
Besieris and Tappert14 in connection with the pulse prob
lem discussed in Sec. 9 of 1. Our formula fOr the pulse
spreading factor [below (1. 9.47)] agrees, up to a factor 
3/2, with their results. In OUr formula, as well as in 
(1. 9.44), the factor !o ~ R(s) cos2ks ds is set equal to 
one so that (I. 9.44) is in fact dimensionally correct. 
Besieris and Tappert treat the problem in the forward 
scattering approximation but, as (1. 9. 8) and (1. 9.9) in
dicate, backscaUering is negligible in the diffusion limit 
as well. 

2. FORMULATION OF THE PROBLEM AND 
STATEMENT OF RESULTS 

Let u(x) denote the complex-valued scalar wave field 
at location x E (- 00, 00) with the time dependence 
exp( - iwt) omitted throughout. We assume that u(x) sat
isfies the following equation and boundary conditions: 

d2u(x) 
72+ k2 [1 +E/J.(X)]U(x) =i2k1i(x - y), ° "",x,Y"'" " 

x (2.1) 

u(x) = T+ exp(ikx), x ~ " u(x) = T_ exp( - ikx), x"'" 0, 

(2.2) 

u(x) and d~~) continuous, (2.3) 

(2.4) 

Here k is the free space wavenumber, JJ.(x) is a wide
sense stationary random process satisfying (2.4)15 
(where E{ • } denotes expected value) and E is a small pa
rameter characterizing the fluctuations of the refractive 
index. T.(y, I) and T_(y, I) are the complex-valued right 
and left transmission coefficients. These coefficients 
depend upon y, the source location, and I, the width of 
the random medium, as does the wave field u==u(x,y, l). 
In general, we will not display this dependence upon y 
and I explicitly. 

As in (1. 2.15)16 we define the complex valued func
tions A(x,y, I) and b(x,y, I) by 

u(x) = exp(ikx) A(x) + exp( - ikx)B(x), 

d~~) == iklexp(ikx)A(x) _ exp( _ ikx)B(x)] (2.5) 

so that 

A(x) = 1 exp( - ikx) (U(X) + i! dz:ixX») , 

B(x) == texp(ikx) (U(X) - i! dz:ixX»). (2.6) 

We interpret A(x) and B(x) as the "slowly varing" com-
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plex amplitudes of right and left propagating waves 
whose sum composes the wave field u(x). From (2.1)
(2.3) and (2.5) we see that A(x) and B(x) satisfy the fol
lowing stochastic boundary value problem: 

dA(x) EiklJ. (x) [ . ] 
~= -2- A(x) + B(x) exp( - z2kx) , 

(2.7) 
dB(x) 

dx 
- EikJJ. (x) [. ] 

2 exp(z2kx)A(x) + B(x) , o"",x"",Z, xif.y, 

A(y +O,y, I) -A(y -0, y, I)=exp(-iky), (2.8) 

B(y +O,y, Z) -B{y -O,y, 1)= -exp{ikj, 0"", y"", " 

A(O,y,I)=B(I,y,I)=O. (2.9) 

The arguments y + ° and y - ° in jump conditions (2.8) 
refer to the limits as x tends to y from the right and left 
respectively. Note thatA{x,y,I), B{x,y,l), and U{x,y, I) 
are random functions which depend upon E. We shall 
sometimes use a superscript, i. e., A (E), B('), ute), to 
denote this dependence. 

From (2.6) and (2.7)-(2.9) it follows that 

/ T/<>(y, I) /2 = /A (e)(x, y, Z}j2 _/ B(e)(x, y, I) /2 

1 (_ au(e) dii(E») ==- u(') ___ U(E)__ x>y 
i2k dx dx' , 

(2.10) 

(2.11) 

The functions 1 T + 12 and 1 T_12 represent the power flux 
to the right and to the left of the source, respectively. 
Since the medium is lossless, the two fluxes are indepen 
dent of the location of the observation point and depend 
only upon the location of the source point and the width 
of the random medium. We define the total power or in
tensity by 

.fE)(x, y, I) == IA (')(x, y, 1}j2 + 1 B(E>(x, y, l) 12 

_1.(1 (E)12 !lau(')!2). 
-2 u +k2 dx (2. 12) 

This quantity depends on the observation point, source 
point, and the width of the random medium. Note that 
when E == 0, L e., there are no random inhomogeneities, 
then u(x) ==exp(iklx - yl), IA 12 -I BI2 =sgn(x - y), and 
IA 12 + IBI2 = 1. It follows from (2.9) that 

1 T+(el(y, Z)12==.f E)(l,y, I), 

1 T _ (el (y, I) 12 == .I') (0, y, I), ° "'" Y "'" I. 

(2.13) 

(2. 14) 

Therefore, it is not necessary to compute the power 
fluxes separately since they can be obtained from .I ,) . 

By letting y to, y""'x"", lin (2.7)- (2. 9) we recover 
problem (I. 2.6), (I. 2.7) with rg==rz==o. Therefore, 
J(E)(X, 0, I) is the function that was considered in J, i. e. , 
total power or intensity as a function of the observation 
point and width of the random medium, with plane wave 
illumination of the medium from the left. Note that 
J(')(l, 0, Z) is the power transmission coefficient for this 
configuration. All relevant information about power 
transport is contained, therefore, in the random function 
.f')(x,y,l),O"",x,y"",l. 
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We shall now state our results. Let 7, ~, and Tj be de
fined as follows: 

(2.15) 

These variables are the scaled width of the random me
dium' the scaled distance of the source from the mid
point, and the scaled distance of the observation point 
from the midpoint, respectively. The limit E + ° with 7, 
~, and Tj fixed is called the diffusion limit. The mean 
power or intensity in the diffusion limit is defined by 

MJ(7,~, Tj) ==limE{J(e)([7/2 + Tj]/E2, [7/2 + ~]/E2, 7/E2)}. 

(2.16) 

As our first result, we assert that this limit exists and 
that MJ is given by the following formula: 

x [(t2 + t) cos2ta(~ + Tj) + (t2 - t) cos2ta(7 -I ~ -Tjl) 

+tsin2ta(7-1~-TjI)Jdt, (2.17) 

where 7;' 0, - 'T/2 -'S ~,Tj -'S 7/2, and 

a == tk2 10 ~ R(s) cos2ks ds. (2.18) 

From (2.17) and (2.18) it follows that MJ depends on k 
and the correlation function R(s) [cf. (2.4)] through the 
parameter a which is the value of the power spectrum 
of kjJ. at wavenumber 2k. For brevity, we refer to 
MJ as a function of 7, ~, and Tj although it actually is a 
function of a7, a~, and aTj. Observe that MJis a sym
metric function of ~ and Tj (L e., it obeys the principle 
of reciprocity) and is invariant under the transformation 
~- -~, Tj- -Tj. 

When ~ == - 7/2, i. e., the source is at the left end of 
the random medium, we recover formula (I. 6.32)17 
with 8, == 8, == 0. 

MJ(7, - 7/2, Tj) ==exp(a 7/4 _ aTj) 1'" exp( - t
2
a 71 rrt sinhrrt 

.~ cosh rrt 

( sinta(7 -2Tj») 
x \costa(7-2Tj) + 2t dt, 

-7/2-'STj-'S7/2. (2.19) 

Because of the symmetry MJ(7, - 7/2, Tj) ==MJ(7, Tj, -7/2) 
it follows that MJ(7, ~, - 7/2) is given by (2.19) with ~ 
replaCing Tj. However, from (2.14) we conclude that 

MJ(7, ~, - 7/2) == lim E{I T. (e) ([ 7/2 + ~]/E2, 7/E2) 12}. 
e.O 

(2.20) 

Thus, the mean power flux to the left as a function of 
source location and slab width coincides in the diffusion 
limit with the mean total power in the interior at the 
former source location when the slab is now excited by 
a source at the left end. Analogous consequences of re
ciprocity exist for T., but no additional computations 
are needed in view of obvious symmetry about the mid
point of the slab. When ~ == - 7/2 and Tj == 7/2, we obtain 
the mean power transmission coefficient (cf. references 
in I, Sec. 7). 
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MJ(7, - 7/2, 7/2) ==exp( - a7/4)1~ exp( _ t2(7) rrtsi~rrt dt • 
.'" cosh rrt 

(2.21) 

Our second result concerns the fluctuations of the 
total intensity .Ie) in the diffusion limit. We define 
KJ(7, ~,Tj) as follows: 

KJ(7, ~, Tj) == lim E{(J<e) ([ 7/2 + Tj]/E2, [7/2 + ~l!E2, 7/E2»2}. 
e'O 

(2.22) 
The fluctuation in the total power is then given by 

F J(7, ~,Tj) == [KJ(7, ~, Tj) - (MJ(7, ~, Tj»2]1/2, (2.23) 

7;,0, -7/2-'S~, Tj-'S7/2. 

We find that 

KJ(7 ~ Tj)==exp(15a7/4-4aITj-~I)i"'rrtsinhrrte (-f2a7) 
, , 8 .~ cosh2rrt xp 

(t2 + 1) /, 
X (t2 + ~)2 ~t2 + i) exp( - 2a (7 - 2OT/» + (t2 +-%) 

sin2ta(7 -2OT/)\ x co s2ta (7 - 2 OT/) + (t2 + i) ---''----o't '--'----'-') 

x [w + t)exp(-2a (7+ 2crm + 3 ~t2 +-%) ] 
sin2ta (7 + 2cr~)\ 

xcos2ta(7'+2cr~) + W +i) t ) dt, 

(2.24) 

Observe that KJ(7, ~,Tj) is invariant under the transfor
mation ~- -~, Tj- -1). However, as Eq. (2.24) indi
cates, the second moment of the total intenSity is not 
invariant under an interchange of ~ and Tj, the source 
and observation points. 

When ~ == - 7/2, (2.24) reduces to 

KJi(7 -7/2 )==exp(7a 7/4 -4a Tj) f~rrtsinhrrt 
, , Tj 2 .~ cosh2rrt 

(t2 + 1) 
Xexp( - t2(7) (t2 + ~) W +i) exp(-2a(7 - 2Tj» + (t2 +-%) 

sin2ta (7 - 2Tj) 
xcos2ta(7-2Tj)+(t2 +t) t dt· (2.25) 

From (2.25), (2.19), and (2.23), we obtain the power 
fluctuations at observation point Tj, -7/2 -'S Tj -'S 7/2, when 
the source is at the left end; this solves the power fluc
tuation problem associated with I. Finally, when ~ 
== -7/2 and Tj == 7/2, we obtain 

f~ rrt sinhrrt 
KJ(7, -7/2, 7/2)=exp(-a7/4) h2 t 

.~ cos rr 

(2.26) 

Therefore, from (2.26), (2.21), and (2.23) we obtain 
the fluctuation in the mean power transmission 
coefficient. 

In Figs. la-12a we plot the mean total power or in
tensity MJ and in Figs. lb-12b the intensity fluctuations 
F J as functions of the observation point aTj for a selec
tion of slab widths and source locations. In Figs. 13a 
and 13b we plot the mean power transmission coefficient 
and its fluctuations as a function of slab thickness with 
the source at the left end. Observe that we have only 
considered source locations over half the slab width 
(i. e., ~ == -7/2, -7/4,0). Since MJ, KJ, and therefore 
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F J are invariant under the transformation 1)- -~, 1)
-1), the plots for the corresponding source locations in 
the other half of the slab (L e., ~ = r /4, r /2) can be ob
tained by reflecting the presented curves about the ver
tical axis, 

On these graphs, we have superimposed the results of 
random simulations conducted to verify the theory; the 
agreement is good. Observe that for the three source 
locations considered, the maximum value of the mean 
intensity occurs at the source point. As one moves away 
from the source point, the mean intensity decreases mo
notonically. For a fixed slab thickness, the value of the 
mean intensity at the source point increases as the 
source point is moved from the slab end toward the cen
ter. If, on the other hand, we increase the slab thick
ness while keeping the relative source position fixed 
(i. e., ~/ r = const. ) the mean intensity at the source 
point is again seen to increase. 

When the slab is excited at the left end, the intensity 
fluctuations at the left and right ends of the slab are 
equal (cf. Figs, Ib-4b), This is to be expected since 
the intensities at the left and right ends of the slab cor
respond to one plus the power reflection coefficient and 
the power transmission coefficient, respectively. Since 
the random medium is nondissipative, the two intensi
ties must sum to two; thus the variance of the two slab 
end intensities must be equal. Observe that the peak 
fluctuations (with source at left end) Occur in the slab 
interior between the left end and center. As the slab 
width a r is increased, the peak fluctuation also 
increases. 

When the source is positioned in the slab interior, the 
peak fluctuations occur at the source point and for a 
given slab thickness, they are considerably greater than 
those occuring when the slab is excited at the end, More
over, as the slab thickness is increased with the rela
tive source position held fixed (1, e., Ur= const.), the 
fluctuations build up very rapidly, 

On the basis of the results described above and dis
played in the figures we may conclude the following: 

For ar small, say less than one, the intensity fluctu
ations are relatively small and the mean intensity be
haves in much the same way as the predictions of radia
tive transport theory (cf. Sec. 3). For ar> 2, however, 
the intenSity fluctuations in the interior can be very 
large, especially when the source is also located in the 
interior. In this case, neither the mean intensity of the 
stochastic theory nor that of the phenomenological trans
port theory give any insi.ght into the extremely fluctuat
ing character of the fields. On the other hand, away from 
the source point and near the slab extremities, the in
tensity fluctuations remain moderate even when a r is 
large, This is particularly true when the slab is illumi
nated at one end. Therefore, the mean of the power re
flection and transmission coefficients (cL Fig, 13) are 
stable quantities and the comparison with transport the-
0ry is meaningfuL The enormous size of the fluctuations 
in the interior was unexpected and indeed surprising. 

In Sec, 3, we shall discuss these results in more de
tail and compare them with transport theory, 
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Radiative transport theory is a phenomenological the
ory that views the propagation and scattering of radiation 
as an incoherent process. This theory was first applied 
to the one -dimensional problem by Schuster. 13 We shall 
now outline the transport theory analog of problem 
(2.1)-(2.4) and compare the corresponding solution with 
the results of Sec. 2, as we did in Sec. 8 of I. 

Let us assume that a scattering medium, occupying 
the interval [-r/2, r/2], is excited from within by a 
point source whose distance from the center of the slab 
is denoted by ~. Let 1) represent the distance of the ob
servation point from the center of the slab. We shall as
sume a steady state condition and a conservative medi
um. Let 1+(r, ~,'I)) and T(r, ~,1)) represent the intensities 
of radiation at location 1), propagating in the positive and 
negative 1) directions, respectively, Assume that over 
an interval of length d1), there occurs a backscattering 
of radiation equal to aJ+d1) and a forward scattering equal 
to ard1). Then, a conservation of energy argument leads 
to the following equations: 

d~[+= d~r = - a(r -n, 
1+(r, ~, - r/2) =r(r, ~, r/2) = 0, 

[=(r,~, ~ + 0) -[=(r,~, ~ - 0) =± 1. 

(3.1) 

(3.2) 

(3.3) 

Boundary conditions (3.2) are a simple consequence of 
the fact that scattering only occurs in the interval [- r /2, 
r/2]. The notation ~ + 0 and ~ - 0 used in jump condition 
(3.3) again refers to limits as 1) approaches ~ from the 
right and left, respectively. The point source at location 
~ is assumed to emit radiation of unit intensity. Note 
that the transport coefficient in (3.1) is the parameter a 
defined by (2.18). This choice has been justified, on the 
one hand, in an a priori manner by the heuristic argu
ments of Marcuse. 18 On the other hand, this choice will 
also be dictated in an a posteriori manner by the com
parison of stochastic and transport theoretic predictions 
for small values of ar. 

We shall use the subscript s (for Schuster) to denote 
the transport theoretic quantities of interest. It follows 
readily from (3.1)-(3.3) that: 

MJ.(r,~, 1)) =[+ +r 

= [1 + a (r + 2u~)][1 + a (r - 2a1))J/(1 + ar), 

u= sgn(1) - ~). 

Noting (2.10)-(2.14), we also obtain 

1+a(r+2~)=MJ(r ~ r/2) 
1+ar • " , 

(3.4) 

1)"'~,(3.5) 

1 T_.(~, r) 12 =r -1+ 1 ~ :(:;20 =MJ.(r, ~, - r/2), 

1)';;~. (3.6) 
We again can obtain the right and left-directed power 
flux by an evaluation of the total intensity at the right 
and left slab ends, respectively. 

Let us now compare the mean total intensities MJ and 
MJs when the slab thickness is smalL Assume that 
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aT« 1 with - T/2 ~~, 1) ~ T/2. Define 

f
~ 7Tt2"+1 sinh7Tt 

/3"= ---h2 t dt, n=0,1,2, .... 
_~ cos 7T 

(3.7) 

Using the fact that/3o=l, /31=3/4, and/32=25/16, we 
find the expansions of MJ and MJ. agree to terms of or
der (a T)3. Specifically 

MJ(T, ~, 1) = 1 + aT - 2a 11) - ~ 1-4a2~1) + O[(aT)3] 

=MJ.(T,~,r,,+o[(aT)3], (3.8) 

In Figs. 1-13, we present a graphical comparison of 
the predictions of the stochastic and radiative transport 
theories. The stochastic theoretic curves are drawn as 
solid lines while the transport theory curves are drawn 
as dashed lines. Also displayed on these graphs are the 
results of numerical simulations conducted to verify 
these theoretical results. Figures la-12a compare the 
intensities, i.e., MJand MJ .. as a function of the ob
servation point for a variety of slab thicknesses and 
source locations. Figures Ib-12b present the intensity 
fluctuations F J as a function of the observation point for 
the same selection of slab thicknesses and source loca
tions. Note that we have not exhibited a transport
theoretic analog of F J. Figure 13a compares the sto
chastic and transport theoretic transmission coefficients, 
i. e., MJ(T, - T/2, T/2) and MJ.(T, -1/2, T/2), as func
tions of slab thickness while Fig. 13b presents the trans
mission coefficient fluctuations F J( T, - T /2, T /2). 

Figures 1-4 correspond to a source location at the 
left end of the slab. For this configuration, both the sto
chastic and transport theoretic intensities attain their 
maximum values at the source point and are monotonical
ly decreasing functions of the observation point. Both 
intensities are equal to unity at the slab center. For 
small values of aT, the two intensity curves practically 
coincide; this is to be expected in view of (3.8). As aT 
increases, however, the effects of multiple scattering 
become more pronounced. Both intensity curves tend 
asymtotically toward the values 2 and 0 at the left and 
right slab ends, respectively. However, as aT in
creases, the transport theoretic intensity remains a lin
ear function of the observation point while the stochastic 
intensity exhibits an increasingly nonlinear behavior. 
Note that, in all cases, for both theories, the intensities 
at the two slab ends sum to two. This is to be expected 
since the intensity at the left end equals one plus the 
power reflection coefficient while the intensity at the 
right end equals the power transmission coefficient. 
Since the random medium is conservative, the reflection 
and transmission coefficients must sum to unity. 

In Figures Ib-4b, we present the intensity fluctua
tions F J as a function of the observation point a1) for the 
source point at the left end of the slab. As we noted in 
Sec. 2, the fluctuations at the two slab ends are equal. 
This is due to the fact that they represent the standard 
deviations of two random variables whose sum is a con
stant, i. e., 2. Observe that the largest intensity fluc
tuations occur in the left half of the slab; these fluctua
tions increase as the slab thickness increases. The oc
currence of large fluctuations in the half of the slab 
nearest the incident excitation is, as the graphs indi
cate, supported by our numerical simulations. This 
phenomenon is also in qualitative agreement with obser-
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vations made by Frisch, Froeschle, Scheidecker, and 
Sulem19 based on numerical simulations that they 
conducted. 

Figures 5-8 correspond to a source location midway 
between the left end and the center of the slab, i. e., 
~ = T /4. Observe that the sum of the intensities at the 
two slab ends, i. e., MJ(T,~, - T/2) +MJ(T, ~, T/2) and 
MJ.(T,~, - T/2) +MJs(T,~, T/2), again equlas 2. This 
phenomenon occurs for an arbitrary interior Source lo
cation. We shall now show that in the stochastic case 
there follows, as a simple consequence of jump condi
tion (2.8), the fact that the right and left power fluxes 
are independent of the observation point [cf. (2.10)
(2.14)], and the diffusion limit. From (2.10), (2.11) it 
follows that 

1 T + (e) 12 + 1 T_ (e) 12 = IA (e)(y + 0, y, l) 12 -IA (e) (y _ 0, y, l) 12 

+IB(e)(y -O,y, l) 12 -IB(e)(y + O,y, l) 12 • (3.9) 

Using (2.8) and (2.13)-(2.15), we obtain 

J< e) (T /E2, [T/2 + ~]/E2, T/E2) + J<e) (0, [T/2 + ~]/E2, T/E2) 

= 2 + 2 Re{[.AT"l (T/2 + ~ - 0]/E2, [T/2 + ~]/E2, T/E2) 

+ B(e)([ T/2 + ~ + 0]/E2, [T/2 + ~]jE2, T/E2)] 

Xexp[ik(T/2 + O/E2]}. (3. 10) 

When the diffusion limit (2.16) is applied, the rapid 
phase variations annihilate the expected value of the sec-
0nd term on the right side of (3. 10) and we obtain the 
aforementioned result. The argument for the transport 
theoretic case follows immediately from jump condition 
(3.3) and Eqs. (3.5)-(3.6). 

For the source located midway between the left end 
and center of the slab, the peak intensity occurs at the 
source point. Observe that, as the slab thickness in
creases, the effects of multiple scattering again become 
increasingly important and the peak intensity predicted 
by the stochastic theory grows much faster than that 
predicted by transport theory (cf. Figs. 5a-8a). Fig
ures 5b-8b display the intensity fluctuations correspond
ing to this source configuration. Observe that the inten
sity fluctuations at the slab ends are not equal in this 
case. Note also the discontinuity in the fluctuations at 
the source point that is very apparent for the smaller 
slab thicknesses (Figs. 5b, 6b) but which effectively dis
appears for the thicker slabs (Figs. 7b,8b), i. e., when 
the source is located in the deep interior. 

Figures 8 -12 display the intensity and fluctuation 
variations corresponding to a source located at the cen
ter of the slab. The graphs display the obviously re
quired symmetry with respect to the slab center. The 
peak intensity and peak fluctuations both occur at the 
source point. For a given slab thickness, this SOurce 
location produces the largest peak values. Note, more
over, that these peak values become very large for mod
erate valyes of a T; a peak intensity of 30 and a peak 
fluctuation of 5000 occur for aT equal to 5. 

Figures 13a and 13b show the variation of the power 
transmission coefficient and power transmission coeffi
cient fluctuations, respectively, as a function of a T for 
a source located at the left end of the slab. For the sto
chastic theory, the transmission coefficient is given by 
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(2.21); the transport theoretic transmission coefficient 
can be obtained by setting ~ = - -r/2 in (3.5). We have 

MJs(T, T/2, T/2) = 1/(1 + aT). (3.11) 

The stochastic transmission coefficient decreases ex
ponentially while the transport theoretic transmission 
coefficient decreases algebraically. The fluctuations 
also decrease with increasing aT. As aT increases, 
therefore, the transmission coefficient approaches zero 
in probability. This behavior has also been established 
by Sulem and Frisch20 when the index of refraction is a 
random telegraph process and, in fact, convergence is 
with probability one. For values of aT greater than 8, 
the fluctuations are less than the corresponding spread 
between stochastic and transport theory intensity p ... edic
tions. In the light of these observations, one would ex
pect reasonably good agreement between stochastic the-
0ry predictions and numerical simulation at the right 
end of the slab. Moreover, the simulated results should 
discriminate between the two theories. Simulation re
sults of this sort have been reported by Morrison. 21 The 
simulations plotted in Figures 1-4 and 13 also behave 
in this antiCipated manner. 

In performing the numerical simulations, the expected 
values were approximated by computing an average over 
100 realizations. Each of these realizations in turn was 
a slab consisting of 2000 sections (i. e., of unscaled 
length 2000). Within each realization, the index of re
fraction was assumed to be a two-state random process, 
with states .ff±E. The initial state (L e., the value of 
the process at the left end of the slab) was chosen ran
domly; subsequent switching of states occured randomly 
at intervals which were (approximately) exponentially 
distributed. In the computations, the average number of 
sections between changes of the index of refraction was 
varied from 2.5 to 10, while a wavenumber of 0.5 was 
used throughout. The parameter E, therefore, was not 
specified directly but rather was determined by the other 
variables. Typically, E fell within the range 0.1 ",E '" O. 3, 

The simulations were beset by two difficulties, the 
strongly fluctuating nature of the process being simulat
ed and the inherent limitations of the discrete approxi
mating model. Note, in particular, the failure of the 
simulation model to generate the fluctuations predicted 
in Figs. 7b and llb. In general, however, the agreement 
between the simulated results and stochastic theory is 
good, and we feel that these simulations amply demon
strate the applicability of the stochastic theory. 

Throughout this discussion, we have assumed that 
frequency (or wavenumber k) is fixed while the spatial 
variables change. Note, however, from (2.21)-(2.24), 
(3.4) and the graphs, that MJ, FJ, and MJs are functions 
of aT, a~, and aT/, where a is defined by (2.18). Con
sequently, we could equally well adopt the point of view 
that the spatial variables are fixed and wavenumber is 
variable. For fixed T, ~, T/ and a particular correlation 
function, we could use our graphical data to determine 
the variation of MJ, F J, and MJ. as functions of wave
number through a(k); observe from (2.1), however, that 
we would have to account for the fact that our source 
strength is frequency-dependent. 
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4. DERIVATION OF THE RESULTS 

The derivation that we shall present will rely on Secs. 
3-6 of L In addition to the theory of Ref. 3 (Theorem 3 
of Ref. 3) which we used in I, we shall now also apply 
an improved version of that theory. 4 For the problem 
being conSidered, we need the improved theory to con
clude that the limit theorem for the propagator matrices 
(Sec. 4 of I) holds for certain unbounded functions of 
these matrices. In fact, in I the condition of Theorem 3 
(Ref. 3) that f(g) be bounded was violated. With the im
proved theory, however, such conditions are no longer 
needed. Hence, the results of I, up to Sec. 9, are rigor
ously correct. The pulse propagation results of Sec. 9, 
though, still require additional theoretical considera
tions because of complications that were overlooked; we 
shall not pursue this matter here. In the analysiS that 
follows we shall point out where the improved theory is 
needed. 

P'~:!':(X)i::::'~the12 x 2 m::;;~::~u)ed stochastic 

m(x)=-- (4.1) 
2 _ exp(i2kx) -1 

Let 7)u 7)2' 7)3 be defined as the following 2 x 2 matrices: 

", ~ t(: _OJ, ",~ tC ~, ",~ t (0, ~. (4.2) 

We can express m(x) in terms of 7)1> 7)2' T/ 3 as follows: 

m(x) = klJ. (x)7Jl + (klJ. (x) sin2kx)7J2 + (klJ. (x) cos2kx)1)3' 

(4,3) 

Note that 1)1' 1)2' and 1)3 constitute a representation of the 
Lie algebra su(l, 1) with commutation relations 

T/11)2 -T/27Jl =(1)u T/2l =1)3' (1)1> T/sl= -T/2' 

[T/2' 1)3l = - T/l' 

Thus, m(x) is a stochastic process with values in 
su(l, 1). 

(4.4) 

Let Y(x, y) denote the 2 X2 matrix solution of the ini
tial value problem: 

dY(x, y) = Em(x)Y(x, y), 
dx 

Y(y,y)=[ (2x2 identity matrix), x~y. (4,5) 

In view of (4.3), Y(x, y) is a stochastic process with val
ues in SU(l, 1), the group of 2X2 matrices of the form 

y=r b) laI2-lbI2=1. (4.6) \b a , 

We decompose Y(l,O) into the product 

Y(l, 0) = YS(l,y)Y2 (y,X)Yl (x, 0), 0 ",x "'y '" I, 

Y(I, 0) = Y3(l, x)Y2 (x, y)Yl(Y, 0), 0", y "'x '" I. 
(4.7) 

The matrices Y1> Y2 , and Y3 , when viewed as functions 
of their first argument, are solutions of (4.5) which 
equal the identity matrix when their two arguments co
incide. Equation (4.7) is simply an expression of the 
propagator property (cL I, Sec. 3). To simplify the no
tation, we omit the arguments and write 
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yj=(:j ~j\ la j I2-lb jI2=1, j=1,2,3. 
bja j ), 

(4.8) 

The solution of boundary value problem (2.7)-(2.9) can 
be expressed in terms of Yu Y 2 , and Y3 as follows: 

- bg(a2b1 + b2a1) + a g(02b1 + a2a1) , 0 -'Sx -'S Y -'S l, 
A- b![ii3 exp(iky)-bg exp(-!,:?,)] \ 

B- -iil[ii3exp(~ky) -:.b3exp(-i,:?,)] (4.9) 
- b3(a2b1 + b2a1) + a3(b2b1 + a2al ) 

These formulas generalize (I. 3.9) and (I. 3.10) for the 
matched case. 

We shall now introduce the notation: 

(:21 ~2~ = (:2 ~2\ (:1 ~~ = (:2
a

l + ~2~1 a/il 
+ b

2a\ 
\b21 a2) b2 a2) bl a) b2a1 + a2b1 b2b1 + a2a), (4. 11) 

(

G32 b32) (a3 b~(a2 b~ (a3a2 + b/i2 a3b2 + b3a2\ 

b32 a32 =\b3 (3)~2 a2)= b3a2+a}2 b3b2+a3a2}. (4.12) 

Observe that the denominator of (4.9) is b3b21 + a3a2l and 
the denominator of (4. 10) is b1 b32 + ala 32 , We shall also 
introduce polar coordinates, as in Sec. 5 of I, by 
defining 

a j =exp[i(1) j + IJI N2] cosh(ti/2), 

b j = exp[i( 1> j -IJI j)/2J sinh(ti /2), 

j=1,2,3. 

Similar ly, let 

a 2l = exp[i(1)21 + 1J1 21)/2] cosh(ti21/2), 

b2l =exp[i(1)21 -1JI2l)/2]sinh(ti2/2), 

a32 = exp[i(1)32 + 1J132)/2] cosh(ti3/2), 

b32 = exp[i(1)32 -1JI32)/2] sinh( ti3/2). 

(4,13) 

(4.14) 

The following useful relations, which constitute the law 
of cosines in the hyperbolic disc, are a consequence of 
(4.11) and (4.12): 

coshti2l = coshti1 coshti2 + cos( 1>1 + 1J1 2 ) sinhti1 sinhti2, 
. . (4.15) 

coshti32 =coshti2 coshti3 + COS(1)2 + IJI) smhti2 smhti3. 

We are primarily interested in .fd(X, y, l), which is 
defined by (2.12). Using (4.9)-(4.16), we express it as 
the following function of the polar coordinates: 

.fe)(x, y, l) 

_ 2 coshO)cosh03 - cos (2ky - /fi 3 ) sinh03] , 
-1 + cosh03coshti2l + cos(1JI3 + 1>21) sinh03 sinh 021 
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1 + cosh Ol cosh032 + COS(1)1 + ~32) sinh01 sinh032 , 

O-'Sy-'Sx-'Sl. (4.17) 

These formulas generalize (1. 5.12) and (I. 5.13) for the 
matched case. 

Note that 

l.fel(x,y, 01 -'Scosh01(coshti3 + I sinhe31), 0 -'Sx -'S Y -'S l, 

(4.18) 

or 

l.fd(x, y, l) 1< cosh03(coshtil + I sinhOll), ° -'S Y -'Sx -'S l. 

(4.19) 

From (4.13) it follows that: 

1.1 e) (x, y, l) I -'S ( I al l2 + I b112)( I a3 1 + I b31 )2, 

O-'Sx-'Sy<l, (4.20) 

l.fd(x,y, l) 1< (la312 + I b312)(1 all + I b11)2 

o <y < x < l. (4.21) 

.f') can therefore be bounded by absolute moments of the 
elements of the propagator matrices. These are precise-
1y the kind of estimates required in the improved theory 
of Ref, 4. Theorem 3 of Ref. 3, on the other hand re
quired uniform boundedness. We can thus proceed now 
as in Secs. 4 and 5 of I without difficulty. 

To facilitate application of the limit theorem, expres
sions (4.18) and (4.19) for .fe) will be further trans
formed. We record the following facts about the 
Legendre functions P,;'(u) that are needed22: 

d (; d ~ m 2 

du \(u
2 
-1) du P;(u); - u2 -1 P;'(u) 

= v(v + l)P~(u), u> 1, 

2 f~ 7Tt sinh7Tt 
u + 1 = _~ cosh27Tt P-l/2+it(U) dt, 

~ r(v-'ml+1)plml( 0) 
Pv(cosh~) = 3:~ r(v + I m 1+ 1) v cosh 

(4.22) 

(4.23) 

xpJml (coshe) exp[im(1) + IJI)J, (4.24) 

cosh~ = coshe coshe + cos(1) + IJI) sinhO sinhe, (4.25) 

P~(U)=P~V-l(U), (4.26) 

upJml(u) = 2:+ l[(v -I m I + l)pJ':'ll(u) 

+ (v + I m I )P~,7-i(u)], (4.27) 

4 !~ (2 1.) 7Tt sinh7Tt p ( ) dt u?; 1. (4 28) 
(u + 1)2 = _~ t + 4 cosh27Tt -1/2+il U , • 

Only (4.23) and (4.28) require a brief comment. Note 
that if we set u = 1 and use the fact that Pv(1) = 1, we ob
tain the relations f3 0 = 1 and f31 + if3 0 = 1, respectively 
[cf. (3.7)]. It is well known that (4.23) follows from the 
Mehler transform. 22 We can derive (4.28) from (4.23) 
by observing that the solution g(T, u) of the equation 

J...g=J...~u2_1)J...g\, u>1, g(0,u)=1+1
u 

(4.29) aT au \' au J 
has the integral representation 
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Therefore, we have 

gT(O, u) = [(U2 
-1) (1 ~ u) T = (1: ~)2' (4031) 

By combining (4.31) and (4.30), we obtain (4.28)' 

We shall analyze (4.16) in detail; the analysis of 
(4. 17) follows in the same way. Observe that we can 
write 

(4.32) 

where the triple subscript is an obvious extension of the 
notation introduced in (4.14) and (4.15). By using (4.23), 
Eq. (4.16) can be rewritten as follows: 

,( ) [ . ] f'" rrt sinhrrt 
u

E =cosh i\ coshi13 -cos(2ky -1);3)smhB3 h2 t 
_'" cos rr 

(4.33) 

Addition theorem (4.24) when applied to (4 yields 

,( [ . ] J"'rrt sinhrrt u· El = coshB1 coshi13 - cos(2ky -1);3) smhB3 h2 t 
_'" cos rr 

X ~",r(v+lml+1) v cosh 3 v cosh 21 (
if.. nv -Iml +1) plml( B )plml( B) 

X exp(im(<I>21 +1);3))) dt, v=-~+it (4.34) 

To decompose pJm l(coshB21), we require a generaliza
tion of addition theorem (4.24). This, in turn, necessi
tates the introduction of generalized Legendre functions. 
All necessary information about such functions, includ
ing addition theorems and recurrence relations, is given 
by Vilenkin23 (in Chap. VI). We record here the required 
addition theorem: 

exp (im <1>21) p~ml(coshB21) 

~. r(v+lml+1) (. ( ).) 
= ~ r( 1) exp -m <1>1 +1);2 + tm <l>2 

n=-'" v + n + 

(4.35) 

The generalized Legendre function Pmn satisfies the dif
ferential equation: 

!!..- ~U2 -1)~ P' (u)\ _ (m
2 
+ n

2 
- 2mnu)p (u) 

du~ du mn ) \ u2 -1 mn 

= v(v + 1) l~m(u), u > 1, (4036) 

and also the relation 

r(v-n+1) 
r(v + 1) P:(coshB)0 (4037) 

Therefore, when m = 0, addition theorem (4035) reduces 
to (4024)0 

We now use (4035) in (4034) to obtain the desired re
presentation for .IE) (when 0 <:; x <:; y <:; l): 

.IE) = coshBJcoshB3 - cos(2ky -1);3) sinh B3] f"'rrt sin~rrt 
_'" cosh 1/"1 
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( 
'; ~ r(v -I m I + 1) . 

X ::''''n7'-", r(v+n+1) exp(zm(<I>2+1);3))exp(-in(<I>l +Ih)) 

X p'!(coshB1) Pim l,n(coshB2) p~m I(COShB3») dt, 

(4038) 

A similar analysis, utilizing (4.28), can be performed 
to obtain the following representation for (.tE)Y 
(when 0 <:; x <:; y <:; l) 

(.t o»2 = cosh2BJcoshB3 - cos(2ky -1);3) sinhB3]2 f: (f2 + t) 

X rrt si~rrt (E t nV -I m 1+ 1) exp(im(<I>2 + 1);3» 
cosh rrt ""-"'n.-'" r(v + n + 1) 

Xexp(-in(<I>l +1);2»p'!(coshB1) Piml,n(coshB2) . 

XPJml(COShB 3»)dt, v=-~+ito (4.39) 

We now apply the diffusion limit, Le., (2016) and 
(2.22), to (4.38) and (4 039) to obtain MJ and KJ, re
spectivelyo Thus, we take expectation or statistical av
erage of .te) and (.1'»2 with respect to the limiting prob
ability distribution of the propagators. As explained in 
Sec. 4 of I, the propagator matrices corresponding to 
nonoverlapping intervals become statistically indepen
dent in the diffusion limito Up to this point, our analysis 
could be applied to the mismatched problem by adjusting 
the initial value of Y1 and the final value of Y3 (cL Sec o 
3 of 1)0 In the sequel, we shall consider only the match
ed case; the formulas for the more general mismatched 
case are unwieldy but not particularly difficult to obtaino 

Observe that the angle 1);1 is absent in both (4038) and 
(4039), As explained in Seco 5 of I, the limiting transi
tion density for cP is uniformly distributed over [0, 2rr] 
and is independent of B1" (Recall that we are dealing with 
the matched caseo) Therefore, when we average (4038) 
and (4039) with respect to CPl> only the n=O term sur
viveso Moreover, since 1);2 appears only in the combi
nation (CP1 + 1);2)' this average with respect to CP1 also 
eliminates functional dependence upon 1);20 We next aver
age with respect to CP20 The same argument applies to 
this case also; the transition density for <1>2 is uniformly 
distributed over [0, 2rr] and independent of B20 When this 
average is performed, only the m =0 term surviveso 
W~ next average with respect to the uniformly distrib
uted angle 1);3' If we use angular brackets (0) to denote 
averaging with respect to the angles CPu CP2' and 1);3' 
then (4.38) and (4.39) yield 

f
"'rrtsinhrrt 

(J) = coshBl cosh03 h2 t Pv(coshB1) 
_'" cos rr 

(4.40) 

(.12) =cosh2B1 (3 cos~2Bs -1) [ (t2 + t)rr::!~;/ Pv(cosh81) 

XPv(coshB2)Pv(coshB3) dt, v = - ~ + ito (4041) 

To obtain MJand KJ, we must average (4040) and (4041) 
with respect to the limiting distributions of 81> B2 , and 
830 Since we are in the matched case, it follows from 
(I. 5021) [or directly from (I. 5.16)] that in the diffusion 
limit 
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E{Fv(cosh8('T))}= exp(II(1I + 1)a 'T), (4.42) 

In (4.40) and (4.41) we must take the expected value of 
functions of the form uJFv(u), j=O, 1,2, where u=coshB, 
Notice, however, that by using (4, 26) and (4, 27) we can 
rewrite uFv(u) and u2 Fv(u) as linear combination of 
Legendre functions with different degrees. We use the 
scaled variables defined by (2,15) in specifying the ar
guments of the random functions 810 82 , and 83 , For the 
case being considered, L e" O.:S x.:S Y .:S l, these argu
ments are 'T/2 +7/, ~ -7/ and 'T/2 -~, respectively, Equa
tion (4,42) is used repeatedly and after some straight
forward but lengthy computations, (2,17) is obtained 
from (4,40) and (2,24) from (4.41), By starting with 
(4,17), the analysis for the other case, i.e" O.:Sy.:S 
x .:S l, follows in basically the same way as the case we 
have discussed. 

Gazaryan7 studied the configuration corresponding to 
the matched case with a source location at the left end 
of the slab (~= - 'T/2). He observed that the total inten
sity in the interior, L e., MJ('T, - 'T/2, 7/), satisfies the 
heat equation in the variables 'T and 7/, Moreover, Eq, 
(2, 19) with 'T = 0, can be recast into the following very 
simple initial condition: 

(4.43) 

Using the fundamental solution to the heat equation, 
Gazaryan obtained an alternate representation for 
MJ('T, - 'T/2, 7/), His observation was generalized and 
used extensively in Sec. 6 of I. 

For the general configuration, where the source loca
tion is permitted to vary, one can show that MJ('T,~, 7/) 
satisfies the following partial differential equation: 

a ~J= t[t(a~~. "'~ + a~~. "'~) - a(a "'~ - a ",~)]MJ, 
0"= sgn(7J - ~). 

(4.44) 

However, KJ does not satisfy such a simple partial dif
ferential equation. Moreover, the simplicity of the ap
proach as a whole is apparently lost in this more gen
eral problem. Consequently, the approach was not 
pursued, 
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The paper interprets and proves the charge superselection rule within the framework of local 
relativistic field theory as the statement that the charge operator commutes with all quasilocal 
observables. Once the basic formalism expressing the property of locality of the observables has been 
accepted, the proof is an elementary application of Gauss law relating the electric charge in a region 
to the flux of electric field through the boundary of the region. Most of the paper is devoted to the 
evidence that the indefinite metric formalism and its accompanying definitions of gauge, gauge 
transformation, and gauge invariance are internally coherent and consistent with the evidence from 
free field theory and the renormalized perturbation theory of coupled fields. The paper closes with 
speculations on analogous explanations of the baryon and lepton superselection rules within the 
framework of gauge models of strong and weak interactions. 

1. INTRODUCTION 

In its most general form, a superselection rule for a 
quantum mechanical theory can be defined as any re
striction on what is observable in the theory. In its 
traditional more restricted form, a superselection rule 
is specified by an Hermitian operator A commuting with 
all observables of the theory, and the requirement that 
no observed states <P of the theory are nontrivial super
positions Qlt <Pt + 0'2<P2, Qlt (12 *' 0, of eigenstates <Pi> <P2 be
longing to distinct eigenvalues of A. t There are stan
dard invariance arguments for the existence of some 
superselection rules. For example, the univalence 
superselection rule, which says that (- 1)2J commutes 
with all observables where J is the total angular mo
mentum operator can be deduced in any rotationally 
invariant theory in which spinors are not observables. 2 

Nevertheless, there did not exist any systematic the
oretical framework in which the existence of super
selection rules had a natural place until the work of 
Haag and Kastler. 3 Without going into the details of 
their proposal let us recall how superselection rules 
appear in it. 

The basic construct of the Haag- Kastler theory is the 
quasilocal algebra ~ and its associated subalgebras 
Yl(O), the local algebras of bounded space-time regions 
O. The local observables attached to the region 0 are 
self-adjoint elements of ~ (0) and ~(O) is supposed to be 
generated by such observables. A state w on ~ is a 
positive linear functional on ~ normalized to 1 at the 
identity element of ~ : 

w(Il)=1. 

Each such state determines uniquely a cyclic represen
tation of ~ and conversely. (For the definition of this 
representation by the so-called GNS construction see, 
for example, Ref. 4.) Not all cyclic representations 
are physically relevant, and much effort has gone into 
locating appropriate restrictive criteria to exclude 
pathological or physically irrelevant representations. 5- 8 

We will not concern ourselves here with the precise 
statement of such criteria. Instead, we will simply use 
the phrase physically admissible to indicate a state 

selected according to some appropriate criteria. The 
important point is that, once the definition of physically 
admissible has been fixed, the supers election sectors of 
a Haag-Kastler theory are given by the unitarily in
equivalent physically admissible representations of the 
quasilocal algebra. More precisely, one chooses one 
representation from each unitary equivalence class. 
The Hilbert space of the full physical theory is the 
direct sum of the Hilbert spaces in which these rep
resentations are realized. Thus, in a sense, a Haag
Kastler theory predicts its own superselection rules. 

For example, in a theory in which electric charge de
fines the only supers election rule the quasilocal algebra 
ought to have one unitary equivalence class of physically 
admissible representations for each integer value of the 
charge, and no others. The Hilbert space H of such a 
theory is a direct sum tIJ:'_ooH", where H n is the sub
space whose vectors have charge n. 

In recent work Doplicher, Haag, and Roberts have 
gone much further in developing this idea, giving a 
detailed analysiS of the construction of the superselec
tion sectors in the context of a theory that has a group 
of local gauge transformations. 6-8 As the authors em
phasize, this work applies only to theories in which 
long-range forces are absent (theories with a mass 
gap). It was natural to work out this case first, since 
it is technically easier and the general problems in this 
subject are formidable indeed. However, to treat the 
superselection rule of electric charge, as we do in the 
present paper, one must go further since massless 
photons must be dealt with. 

In fact, as is well known (see, for example, Ref. 6, 
p. 3 or Refs. 9-11) but not so widely appreciated, to 
treat quantum electrodynamics without abandoning a 
description in terms of local fields, one has to gen
eralize the basic framework of Haag and Kastler in an 
essential way: the notion of state described above does 
not suffice to provide the representations necessary for 
the construction of the electromagnetic vector potential 
as a local field nor of charged fields as local fields. A 
formalism with indefinite metric of the type introduced 
by Gupta and Bleuler is necessary. Since this result is 
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essential for the justification of the assumptions we 
make in the following, let us recall some of the evidence 
that supports it. 

Suppose one attempts to construct a theory describ
ing a free electromagnetic field by a field operator Fuv 
and a vector potential operator Au satisfying 

Fuv= auAv- avAu (1.1) 

and that one accepts the usual assumptions: 

(1) Fuv and Au are operator valued distributions on 
Minkowski space with values which are unbounded opera
tors in a Hilbert space H. 

(2) In H there is a continuous representation of the 
restricted Poincare group {a,A}- U(a,A) such that 

U(a, A)FK).(x)U(a, A)-1 = A uKAv).Fu v (Ax +a). (1. 2) 

There is a sesquilinear form ( . , .) such that U(a, A) is 
unitary with respect to ( . , . ) 

(U(a,A)<1>, U(a,A)>¥) =(<1>, 'II). (1. 3) 

For Au one assumes initially only a transformation law 
under translations 

U(a, l)Au (x)U(a, 1)-1 =Au (x +a). 

(3) There exists a unique vector'll 0 in H invariant 
under U(a, A) 

(1. 4) 

U(a,A)>¥o=>¥o. (1. 5) 

Theorem 1. 19: In a local quantum field theory with 
fields Fuv, ¢OI' a=l, ... ,n, in which (1), (2), (3) hold, 
the assumptions 

and 

U(O, A)A" (x)U(O, A)-1 =Av uAv(Ax) 

imply 

('1'0' FK).(x) F" v(y)>¥ 0) = 0. 

(1. 6) 

(1. 7) 

This theorem shows that the validity of Maxwell's 
equations (with vanishing electric current) together with 
the Lorentz transformation law of the vector potential 
leads to a trivial theory. 

A second result of this kind is 

Theorem 1. 211: In a local quantum field theory with 
fields Fuv, ¢OI' a=l, •.• ,n, in which (1), (2), (3) hold, 
the assumptions 

and 

('I' 0, [A" (x), Av(y)]>¥ 0) = ° (1. 8) 

for spacelike x - y, i. e., (x - y)2 < 0, imply 

('1'0' FK).(x)Fuv(y)>¥ 0) = O. 

The net effect of these results is to show that a the
ory of the free electromagnetic field that maintains the 
Maxwell equations as operator identities must use a 
vector potential that is both nonlocal and not a Lorentz 
convariant vector field. That is precisely what happens 
in Coulomb gauge quantum electrodynamics. 
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The Gupta-Bleuler formalism evades these difficul
ties by abandoning the Maxwell equations as operator 
identities. It insists on locality and Lorentz invariance 
but replaces (1. 6) by 

(1. 9) 

valid in a linear space H. H has a distinguished sub
space H' on which the modified Lorentz condition 

(1. 10) 

holds. H is equipped with a sesquilinear Hermitian form 
(<1>, 'II) which is semidefinite on H'. 

(<1>,<1»"'0, <1>EH' (1.11) 

(sesquilinear means (<1>, '1') is antilinear in <1> and linear 
in'll, and Hermitian means (<1>, 'II) =('1', <1»). H' in turn 
has a distinguished subspace H" conSisting of the vectors 
<1> of zero length 

(<1>, <1» = O. (1. 12) 

Vectors describing physical states are elements of the 
quotient space H'/H" =HptrfS' Maxwell's equations (1. 6) 
are valid in the sense that 

(<1>, au Fuv>¥) = ° 
for <1>, 'I' EH'. 

(1. 13) 

It appears that many phYSicists find the nonphysical 
aspects of the Gupta-Bleuler formalism repellent, 12 

so it is natural to ask whether the difficulties involved 
in satisfying Maxwell's equations USing a vector poten
tial are special to the free electromagnetic field. The 
following makes it clear that analogous troubles arise 
in the presence of charges. [Recall that a field <1> car
ries a charge q if exp(iaQ)¢ exp(- iaQ) = exp(iaq)¢ 
where Q is the electric charge operator and a is any 
real number. ] 

Theorem 1. 3 13: In any quantum field theory in which 
a charged field 1> is defined as a local field in a Hilbert 
space equipped with a nondegenerate sesquilinear form 
( . , .) Maxwell's equation 

ouF"v=jV, au*pv=o, (1. 14) 

cannot hold as operator equations in H. Moreover, if 
H' is a linear manifold cH, stable under I/"= a"Fuv _ jV, 

AVH'cH', 

and such that 

(<1>,<1»"'0 for <1>EH' 

and 

(<1>,A V>¥) = 0 for all <1>, >¥EH', 

(1. 15) 

(1. 16) 

(1. 17) 

then ( . , .) cannot be strictly positive on H' nor non
negative on H unless 

(<1>, ¢(f)>¥) = 0 for all <1>, >¥EH'. (1. 18) 

The mathematical consistency of the Gupta-Bleuler 
construction of the free Maxwell theory is well known. 
(see, for example, Ref. 14, pp. 169-72.) One can ob-
j ect to it at most on aesthetic grounds. Its extension to 
a theory with nonvanishing electric current has at least 
the same status as any other nontrivial renormalizable 
local relativistic quantum field theory: Its renormalized 
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perturbation series are known to exist term by term. 
(The idea of the proof modulo infrared divergences goes 
back to Dysonl5 ; the proof that with the appropriate def
initions there are no infrared divergences in the Green's 
functions and retarded functions is a recent result. 16) 

Thus, if one seeks to maintain the ideas on which Haag 
and Kastler base their assumption about local algebras 
of observables and at the same time incorporate the 
laws of electrodynamics it is not unnatural to use an 
indefinite metric formalism. 

The purpose of the present paper is to answer the 
question: Given quantum electrodynamics in an indefinite 
metric formalism, what is the status of the charge 
supers election rule? We will show that it is a theorem 
of the theory: All quasilocal observables necessarily 
commute with the total chargeo 

As the reader will see, once the definitions have been 
fixed, the proof is an elementary application of Gauss' 
theorem of electrostatics. If we simply ignore the dif
ficulties indicated in Theorems 1. 1, 1. 2, and 1. 3 and 
work in the Coulomb gauge, it goes as follows: If A is 
a local operator, i. e., an operator representing an ob
servable of the bounded region 0 of space, what has to 
be proved is 

[Q,A] = 0 

where Q is the electric charge. Now 

Q = 1i~ JIZI "RP(X, t) d3x 

and 

div{=p. 

Thus 

[Q,A] = 1i~ Jill "R [p(x, t),A]d3
x 

= ~~JIZI=R [{(x, t),A]' ds. 

(1. 19) 

(1. 20) 

(1. 21) 

(1. 22) 

But for R sufficiently large, the electric field is evalu
ated only outside the region 0 and therefore the com
mutator should vanish, and consequently Q should 
commute with A. 

Why does this not settle the matter and eliminate the 
need for the following rather long argument? In our 
opinion the answer is threefold. First of all, the argu
ment depends on the use of Maxwell's equation (1. 21) 
which cannot hold in any local or covariant gauge. On 
the other hand, in the Coulomb gauge in which (1. 21) is 
valid, the argument (1. 20)-(1. 22) is illegitimate or at 
least highly dubious because renormalization constants 
appear in the equation relating the charge denSity and 
the total charge: 

[div{(t, x), 1/ic(t, y)] = - erenZ;10(x- y)1/ic(t, x). (1. 23) 

[See Ref. 17, pp. 107-9. The relevant equation (6. 42c) 
contains a misprint; there should be a factor e ren on the 
right-hand side. ) Thus, in fact, the limit on the right
hand side of (1. 20) does not exist if Z 3 = 0 as is general
ly regarded as likely except possibly for isolated values 
of ~en' If Z3 *- 0, the limit would exist but would not yield 
the charge unless Z 3 = 1, which is generally regarded as 
unlikely except when e ren = O. These statements hold even 
if the limit is understood as holding only for matrix 
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elements between appropriately chosen states dense in 
the Hilbert space of states. Secondly, as will be dis
cussed in somewhat more detail later, the Coulomb 
gauge may have appreciably worse ultraviolet prop
erties than the local covariant gauges. The argument 
for the validity of these statements may be based either 
on perturbation theory or formal canonical field theory. 
All the needed formulas are to be found in Ret 17, pp. 
94-112. Thirdly, even if one accepts this argument in 
the Coulomb gauge, one has the problem of obtaining the 
same result in local covariant gauges, since only in 
those gauges is it possible to do field theory in an ex
plicitly local and covariant form consistent with the style 
of the Haag-Kastler theory. 

The reader will see below that the proof in any local 
covariant gauge requires only slight modifications of 
the above questionable proof. There are no new ideas 
involved, just a conscientious use of the theory in a 
local covariant gauge. The fact that the revised proof 
is still very simple does not make the result any less 
true, nor, in the opinion of the authors, less 
significant. 

In the course of correspondence on the subject of this 
paper with Haag, we learned of Ref. 18, which we had 
previously overlooked. In it the above explanation 
(1. 19)-(1. 22) of the origin of the charge superselection 
rule in Maxwell's equations and the locality of observa
bles was clearly outlined. (see especially p. 34 where 
the following statement occurs: " ... Die physikalisch 
wesentliche Aussage der supers election rule der 
Ladung ist, grob gesprochen, dass bereits die Ladung, 
welche in einem endlichen Raumgebiet enthalten ist, mit 
allen Observablen innerhalb dieses Gebietes kom
mutiert. ") We also learned in correspondence with 
Haag and Swieca that in the middle sixties the latter had 
formulated and proved the statement: "In quantum elec
trodynamics there are no local charge carrying fields," 
but it remained unpublished. All this work was done in 
Coulomb gauge but as the authors made clear to us, 
they felt that was only a matter of convenience. As we 
have just stated we believe the argument to be unsound 
in the Coulomb gauge but its modification in local co
variant gauges to be sound. However, we do not wish 
thereby to claim originality for the ideas involved in the 
argument. (see, in particular, Ref. 19, p. 228.) The 
purpose of the present paper will be achieved if it makes 
very plain to the reader that the charge superselection 
rule is, in local relativistic field theory, a consequence 
of the dynamical laws governing the behavior of charges. 

If one has recognized the dynamical origin of the 
charge supers election rule in Maxwell's equations it is 
natural to ask whether the baryon supers election rule 
and the (presumed) lepton supers election rule have 
analogous explanations in the special structure of strong 
and weak dynamics. The answer is yes in appropriately 
chosen local gauge theories if the solutions of the the
ories exist and have the properties currently attributed 
to them. 

In outline, the paper is arranged as follows. In Sec. 2 
we introduce notions of gauge, gauge transformation, 
and gauge invariance and test their effectiveness on the 
available evidence in free field theory and perturbation 
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theory. In Sec. 3 the charge superselection rule is 
stated and proved. Section 4 contains an account, neces
sarily speculative, of possible dynamical explanations of 
the baryon and lepton supers election rules. 

2. GAUGES, GAUGE TRANSFORMATIONS, AND 
VARIOUS NOTIONS OF GAUGE INVARIANCE 

It is the purpose of this section to motivate and then 
define precisely gauge, gauge fransformation, and four 
notions of gauge invariance. We go to considerable 
lengths to verify that the definitions in question work 
smoothly for the free electromagnetic field in most of 
the special gauges we are aware of. The definitions of 
strict gauge invariance, gauge invariance, and weak 
gauge invariance we adopt were, to the best of our 
knowledge, first introduced by Symanzik, 17 see also 
Ref. 9. As will be seen in the following section, it is 
a fourth notion, gauge indeperuience, that is needed in 
the proof of the charge supers election rule. 

The reader who is uninterested in motivation and 
circumstantial evidence for the reasonableness of 
definitions is advised to proceed directly to Sec. 3 after 
reading the Definitions, Lemmas, and Propositions. 

Gauge invariance in classical and Schrodinger theory 

In the classical magnetohydrodynamics of a charged 
fluid, the equations of motion are Maxwell's equations 

j" = !1.. pvlL 
m 

and the Maxwell- Lorentz equations 

OIL (pv"'VV) = F""'j",. 

(2.1) 

(2.3) 

Here p is the mass density of the fluid and v'" its 4-
velocity. In this theory the equations of motion are ex
pressed directly in terms of the electromagnetic field 
F",v and the observables p, v"'. The introduction of a vec
tor potential is purely a matter of mathematical con
venience. Independence of the choice of gauge has no 
dynamical consequences that are not already explicit in 
the equations of motion. If all the observables of the 
theory are regarded as functions of the quantities p, v, F, 
they are automatically independent of the choice of . 
gauge. 

In a classical field theory in which some of the basic 
fields carry charge the situation is different. For ex
ample, in the theory of a coupled Maxwell and charge 
scalar field the Maxwell equations (2.1) are supple
mented by 

j'" = i! i(¢(o'" +iq(lfct1A"')¢ - (a'" - iq (lfct1A"') ¢¢) 

(2.4) 

and 

(0'" +iq(lfc)-IA"')(a", +iq(lfc)~IA",)¢ + (,;cy ¢ = O. (2.5) 

The invariance of the dynamics under a change of gauge 
is expressed by the fact that the equations retain their 
form under the replacement 
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A", -A", =A", - a",X, 

(2.6) 

(2.7) 

i. e., the dynamics is invariant under the gauge trans
formation (2. 6) and (2. 7). In such a theory all observa
bles are expressible as functions of A" and the charged 
fields and it is natural to impose the physical require
ment that they too be invariant under gauge transforma
tion. In the example of the charged scalar field satisfy
ing (2.4) and (2. 5), the reasonableness of the require
ment of gauge invariance for all observables is further 
buttressed by the fact that the theory can be rewritten 
(at least formally) in terms of the manifestly gauge in
variant quantities, j, F, 

s = ¢*¢, (2.8) 

and S, the time derivative of s. 20 Thus, the electro
dynamics of a charge scalar field when rewritten in this 
way becomes a manifestly gauge independent theory like 
magnetohydrodynamics (2.1), (2.2), (2.3). 

Is every theory of charged fields that is invariant 
under gauge transformations such a manifestly gauge 
invariant theory in disguise? The answer is not known, 
but it seems plausible that the answer ought to be yes. 
To the extent that these examples are a guide, it is not 
unreasonable to accept the requirement of the invariance 
of dynamical equations under gauge transformations as 
a physical restriction on classical field theories. 

Next let us turn to the analogous situation in n-body 
Schrodinger theory. There the state of the system is 
described by a wavefunction 'l1(xt> ... ,xn, t) satisfying 
the (in general, time-dependent) Schrodinger equation 

ilf :t 'l1(t) = H(t)'l1(t) (2.9) 

with 

The vector potential A and the scalar potential ¢ are 
regarded as given functions of x and t. The analogs of 
the transformations (2.6) and (2.7) are here 

'l1(xl' X2, ... ,xm t) - exp(("t q j(lfcr1X(xj , t)\ 'l1 (xI , ... ,~, t), ~ }=1 '} 

A(x, t) - A(x, t) + VX(x, f), 

¢(x, t) - ¢(x, t) - ~ (x, t), 

(2.10) 

and all presently existing evidence points to the idea 
that all observables are invariant under such a change 
of gauge, as the time-dependent Schrodinger equation is. 

As is well known, the presence of suitable vector 
and scalar potentials in the Schrodinger equation gives 
rise to subtle interference phenomena (Ehrenburg
Siday-Aharanov- Bohm effects21. 22), effects which ap
parently depend on A and ¢ rather than on the electro
magnetic field strengths [ and B at the location of the 
electron. These phenomena are relevant here because at 
first sight their existence appears to contradict the 
conjecture made above that the equations of motion for 
gauge invariant theories can be rewritten in equivalent 
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manifestly gauge invariant form as equations of motion 
for local quantities. 

To understand the solution of this apparent paradox, 
it suffices to consider the case of one particle (n = 1). 
Then it is natural to introduce the local gauge-invariant 
quantities, the density 

p(x, t) = q 1 'l!(x, t) 1
2

, 

the current 

j (x, t) = 2~i ('l!(X, f) (v - ~~ A(x, t)) 'l!(x, f) 

- (V + ~~ A(x, f)) 'l!(x, t)'l!(x, t)) 

and the stress tensor 

(2.11) 

(2. 12) 

(2.13) 

The equation of continuity for p and j follows from the 
Schrodinger equation. It can be regarded as an equation 
of motion for p, 

~oo-V.j of • (2.14) 

An equation of motion for j Similarly follows from the 
Schrodinger equation. It is the differential form of 
Newton's law of motion 

a' 1 a! = m [pc +jXB]-qV·@. (2.15) 

If @ is written as a function of p and j, 

q@ = ~~j -G!~rvpvpJ +(2~YVVP' (2. 16) 

the pair of equations (2.14) and (2.15) provide the re
quired manifestly gauge-invariant local substitute for 
the Schrodinger equation. How then can one understand 
the Aharanov-Bohm paradoxes? What Aharanov and 
Bohm described are situations in which an interference 
effect [one giving rise to a clmnge in p(x, f)] is produced 
by the introduction of potentials which are essentially 
constant along the path where the charged particle 
moves (and therefore produce no electromagnetic field 
there). They are nonconstant and therefore do produce 
a field elsewhere, where the charged particle does not 
go. According to Aharanov and Bohm, this shows that 
in quantum theory the potentials can produce physical 
effects not expressible in terms of local action by the 
fields. Looked at from the point of view of (2.14) and 
(2.15) this behavior is very strange because they are 
perfectly local equations in which the potentials do not 
occur. The explanation is that the description of 
Aharanov and Bohm is over-idealized at a decisive 
point. (There are many "explanations, ,,23 including 
some rather close to ours24 ; we give one sufficient for 
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our present purposes. ) The solution of the Schrodinger 
equation always has a tail which runs into the region of 
nonvanishing field and that field, by purely local mani
festly gauge-invariant action, produces the effect. It 
will not do to argue from finite propagation speed that 
the effect will not be felt elsewhere soon enough; in 
Schrodinger theory effects can be propagated instan
taneously. If one keeps the wavefunction out of the re
gion of nonvanishing field by fiat (or by introducing an 
infinitely large repulsive potential), making p and the 
normal component of j vanish on the boundary, there is 
still a vestige of the old phYSical effect in the necessity 
of specifying the tangential component of j. For the case 
of an electron scattered by a magnetized wisker, for 
example, one has 

f i. dr = ( A(x)· dr = magnetic flux L p JL 
where L is a loop around the whisker. Thus, the arbi
trariness in the tangential component of j provides the 
freedom to produce (or not produce, if the flux is zero) 
the ESAB Effects. 

The resolution of the apparent paradox for the many 
particle case (n> 1) goes along similar lines. Formally, 
it is efficient to follow Dashen and Sharp, 25 by introduc
ing the second quantization of p and j. We will not 
pursue the matter but rather turn to the formulation of 
gauge invariance in the quantum theory of fields, our 
real objective. 

In quantum field theory proper, one treats both the 
electromagnetic field and the matter fields quantum 
mechanically, and one has to consider anew the form
ulation of gauge invariance. As we have already re
counted in Sec. 1, to describe a vector potential for a 
free electromagnetic field in a local or relativistically 
invariant way one needs a Gupta- Bleuler formalism. 
Gauge invariance in this context has some new features. 

The Gupta-Bleuler gauges for the free electromagnetic 
field 

There is a completely consistent formulation of the 
quantum electrodynamics of the free electromagnetic 
field in terms of the electromagnetic field operators 
F I>P which does not use a vector potential at all. (In 
fact, this was the first manifestly covariant construc
tion of a quantized electromagnetic field by Jordan 
and Pauli. 26) However, in order to be able to formulate 
gauge invariance in the conventional way one has to 
introduce a field operator AI), for the vector potential 
and to give meaning to the transformation (2. 7). Here a 
question arises. Is the gauge field X to be interpreted as 
a quantized field or as a real-valued function multiply
ing the identity operator? The former interpretation is 
necessary if the vector potential, both before and after 
gauge transformation, is required to transform under a 
representation of the Poincare group as 

(2. 17) 

and only it will be considered for the moment. We will 
make some remarks on the alternative later, when we 
treat the case of the coupled fields. 

In order to display the operator explicitly let us re
call the construction of the Gupta-Bleuler formalism 
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for a free electromagnetic field in a little more detail. 
The first step is the definition of the Hilbert space H(1) 
whose vectors are all 4-component functions {<1>,,; 
Il = 0,1,2, 3} defined on the mantle C+ of the future light 
cone and square integrable with respect to the in
variant measure dno(k) = d3k/ko, k O = [k2]1 /2. The scalar 
product in H (1) is 

3 __ 

(<1>, >¥)(1) = J dno(k)i:) <1>"(k)>¥,, (k). (2.18) 
c. ,,=0 

An indefinite sesquilinear (i. e., antilinear in its first 
argument, linear in its second) form is defined by 

This form is nonnegative for <1>' s that satisfy the 
auxiliary condition 

k"<1>" (k) = 0 (2.20) 

for almost all k. Such <1> constitute a closed subspace 
H(1), of H(1). H(1), in turn has a closed subspace H(1)" 
conSisting of all vectors of H(!)' that have zero length 

(<1>,<1»(1)=0, (2.21) 

They are of the form 

<1>"(k) =g(k)k", (2.22) 

The vectors of the quotient space H~~s =H(1)'/H(1)" de
scribe one-photon states. 

The full Hilbert space of the theory is the direct sum 

(2.23) 

where H(O) is a one-dimensional Hilbert space and H(n) 
is the symmetric tensor product 

H(n) = (H(1)0n)s (2.24) 

of H(!) with itself n times. The elements of H are there
fore given by sequences 

<1> = {<1> (0) <1>(1) 4>(2) ••• } , , , 
where 4>(0) is a complex number and 

",(n) (k "'k) 
"'" 1"2'" "n 1 n 

(2.25) 

(2.26) 

is defined for kl ... kn c: C + and is symmetric under 
simultaneous permutations of Ill' .. Iln and kl ... kn• 

H is a Hilbert space when equipped with the scalar 
product (. ,.) induced by the scalar product (. " )(1) on 
H(1). Explicitly, 

(2.27) 

Similarly, there is an indefinite sesquilinear form on 
H induced by ( . , . ) (1) on H (1). Explicitly, 

(4), >¥) = <1> (O)>¥(O) + ~ J .. , J (Bl dno(k j )) 

X(-1)n4>"1···"n(k1·· .kn)>¥"l·""n(k l •• ·kn)· 

(2.28) 
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The form ( . , .) is nonnegative on the subspace H', de
fined by 

k"l",(n) (k·. k) - 0 (2.29) 1 "'''l···''n 1 . n-

for all n ~ 1 and almost all kl ... k n• The 4> of H' have 
amplitudes <1>~~'.'''n(kl·· ·kn) whose Ill'" Iln dependence 
is that of a product of polarization vectors, i. e., the 
vectors are orthogonal to k (k itself is among them). 
H" is the subspace of H' consisting of vectors of zero 
length: 

(<1>,4» = O. (2.30) 

When 4> E H", <1> In) is proportional to k" in its dependence 
at least one of its indices Il. 

The vector potential operator A(M,j), smeared with a 
4-component test function!, is expressed symbolically 

A(M;f) = J d4x!" (x)A" (M; x) (2.31) 

and defined by 

A(M;f) = a(rr+(M)!) +a+(rrjM)!). (2.32) 

Here a and a+ are annihilation and creation operators 
defined for gc:H(1) by 

(a(g)4»"(n~ •• ,, (k1··· kn) = - vn + 1 J dno(k) 
1 n 

xg"(k)",(n+1) (kk' .. k ) 
~lJd,1.f,ootLn 1 n , 

(2.33; 

(a+(g)4»~~)···"n(kl '" kn) = ),z ~ [g,,/kj) 

x 4> (n-1) " (k· .. k )] '"'tOooIJ./oolL n 1 n' 

(2.34) 

while the mapping II.,(M) are defined for k E C+ by 

(II., (M)!) " (k) = v'1T [j" (± k) - Mk"kvjv(± k)]. (2.35) 

M is an arbitrary real number whose presence reflects 
the arbitrariness in the choice of gauge as will be seen 
shortly. 

An elementary calculation shows that 

[A(M;!),A(M;g)].= -1( J dno(k)j,.(k)[g"V - 2Mk"kVliv(- k), 

(2.36) 

i. e., expressed symbolically 

[A" (M; x), Av(M; y)] = - {g"v+ 2M o"ov}r1D(x - y), 

(2.37) 

where 

D(x) =D(+)(x) +D(-)(x), D<-)(x) = - n<+)(- x) (2.38) 

and 

(2.39) 

The A,,(M,x) for different M are related to one another 
by the gauge transformation 

A" (M;x) =A,,(O,x) - Mo"x(x), 

where x(x) is defined by 

(2.40) 
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The field X satisfies 

ox (x) = o. 

(2.41) 

(2.42) 

Consequently, a~ A~ (M, x) is independent of M. The 
Maxwell equation (1. 8) is valid for every M with a 
right-hand side independent of M, and auxiliary 
condition 

(2.43) 

that defines H' is independent of M, although the nega
tive frequency part of the vector potential, A <-l(M,/) 
=a(TI.(M)f), itself is dependent on M. 

The gauges given explicitly in (2.40) are the basic 
covariant gauges of the Gupta-Bleuler theory of a free 
electromagnetic field. They are parametrized by the 
single real parameter M. The original papers of Gupta 
and Bleuler21,28 give this construction for M = O. The 
general covariant gauge apparently first appeared in the 
quantum electrodynamics of an interacting electromag
netic field where M is a function of the charge e that 
goes to zero with e. 29 It is (and was then) evident that 
M may also be nonvanishing when e = 0, as it is in 
(2.40). We will denote all these gauges Gupta-Bleuler 
gauges. On the other hand, we will use the phrase 
indefinite metric formalism to describe the structure 
consisting of the three spaces H, H', H", the sesqui
linear form, (".), and the associated field operators. 
Gupta and Bleuler were the first to use an indefinite 
metric formalism to obtain a Gupta-Bleuler gauge, but 
the formalism is far more general. 

Gauges and gauge transformations for the free 
electromagnetic field 

The Gupta-Bleuler gauges are far from exhausting 
the gauges that have been found useful in field theory. 
For example, one has the Coulomb or radiation gauge, 
the Landau gauge, and many more, some of which are 
explicitly discussed below. It is not difficult to see that, 
in general, the vector potentials of these other gauges 
are not connected with A" (M, x) nor each other by trans
formations of the form (2.7), A,,(x) =A,,(x) - a"X(x). 
[for example, in the Coulomb gauge a" F"v = 0 is an 
operator identity on the Hilbert space of physical states 
whereas in the Gupta-Bleuler theory the modified 
Maxwell equation (1. 8) holds on H. If the Coulomb field 
vector potential were connected with the Gupta-Bleuler 
vector potential by (2. 7), they would yield the same 
F",v' ] 

When the circumstance that not every gauge trans
formation is of the form (2. 7) is combined with the the
orems of the Introduction, one is forced to recognize 
that the formulation of gauge invariance is really quite 
different in classical theory and quantum electro
dynamics. Our next task is to give a formulation of the 
notion of gauge and of gauge transformation for the free 
electromagnetic field that is sufficiently general that 
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all the standard gauges are related to one another by the 
proposed notion of gauge transformation. 

We begin with the definition of a notion of gauge. 

Definition 2. 1: A quantization of the free Maxwell 
equations by means of a vector potential A", or, briefly, 
a gauge is specified by 

(a) An operator valued distribution A" in a Hilbert 
spaceH. 

(b) A representation U of the Poincare group inH. 

(c) A sesquilinear form ( . , .) on H with respect to 
which the representation U is unitary. 

(d) A distinguished subspace HI eH such that 

(i) the restriction of the sesquilinear form ( . , .) to 
H' is bounded and nonnegative, 

('l1, 'l1) ;:;, 0 for 'l1 E H'; (2.44) 

(ii) the operators F",v(f) = f F",v(x)f(x) d4x, if fE 5, 
defined in terms of A" by (1.1), are local, leave H' 
invariant, 

F"v(f)H' eH', (2.45) 

and satisfy 

(.;(>, a"F'v(f)'l1) = 0 (2.46) 

for all .;(>, 'l1 E HI with 'l1 in the domain of a). F"v(f); 

(iii) the representation U leaves H' invariant, and 
the subspace H" of H' also; H" consists of the vectors 
inH' of zero length (.;(>,.;(» = 0; as usual H pbys =H'/H". 
[It is also assumed that there exists a vector 'l1 0, the 
vacuum vector, which is invariant under the rep
resentation U, and lies in H'. 'l1 0 is a cyclic vector 
for the vector potential operators and is the unique 
vector of H invariant under the translations U(a, 1). ] 

(iv) for all .;(> E H', the Fourier transform of 
(.;(>, F "v (x)'l1 ~ has sUPP...9rt contained in the closure of 
the future light cone V •• 

We anticipate a remark that will be justified later in 
Lemma 2.2. Call two vectors .;(>1 and .;(>2 EH' equivalent 
when .;(>1 -.;(>2 EH". Denote the equivalence class of .;(>j 
by [.;(>j]' Then as a consequence of P(F"v{f)}H'cH', the 
matrix elements of polynomials P in the smeared elec
tromagnetic fields 

(.;(>, P(F"v(f»)'l1) 

are constant as .;(> varies over [.;(>] and 'l1 over ['l1]. 

For brevity a gauge will be denote {A",H, (. , • ),H'} 
with the understanding that H has a representation of the 
Poincare group associated with it. 

In all gauges known to us, the spectral condition holds 
in the following form stronger than (iv): 

(iv') For all .;(> EH', the Fourier transform of 
(.;(>,A,,(x)Av(Y)'l1 o) has support contained in V. in the 
momenta conjugate to the variables (x + y}/2 and x - y. 

While this definition has been tailored to fit the co-
variant Gupta-Bleuler gauges, it is general enough to 
include the Coulomb gauge. In that case, H =H' =Hpbys, 
H" ={O}, (".) = (".), and the Maxwell equations hold 
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as operator equations. On the other hand, it is not ob
vious that such a gauge as the Landau gauge actually 
conforms to the definition. That will be shown below. 

With the definition of gauge in hand, one comes to a 
natural notion of gauge transformation. 

Definition 2.2: A generalized gauge iranformation is 
an ordered pair consisting of two gauges 

{At",Ht, (. ,. )bHj} and {A2",H2, (. ,. )2,HH 

together with a bijection g of HtphyS onto H2phyS such that 

(i) (<1>bP(Ft".(f»'.¥t> =(<1>2, P(F2".(f»'.¥2) 

for all <1>t, '.¥t EHf and <1>2, '.¥2 EH? with 

['.¥2] =g['.¥d, [<1>2] =g[<1>d, 

(2.47) 

(2.48) 

and '.¥t, '.¥2 in the domains of P(Ft".(f» and P(F2".(f», 
respectively. 

(2.49) 

Note that the left- and right-hand sides of (2.47) are 
independent of which representative vectors <1> and '.¥ are 
chosen from the equivalence classes [<1>] and ['.¥]. Note 
further that even if Ht =H2 and Hi =HL we need not have 

(2.50) 

in H for the two gauges connected by a gauge transfor
mation. (see example 4 below. ) 

Among the generalized gauge transformations that 
lead from a fixed gauge to other gauges, there is an 
important subclass defined as follows. 

Definition 2.3: A special gauge transformation is 
a generalized gauge transformation for which the Hil
bert space H, its subspace H', the sesquilinear form 
( . , . ), and the representation U do not change and the 
bij ection g of H !ptry. into H ptry. is the identity. 

For special gauge transformations, it is not difficult 
to see that the validity of Eq. (2. 50) implies that the 
mapping At" - A 2" may be written in the form 

Not all the special gauge transformations have this 
property. For a subclass of special gauge transforma
tions we can establish (2. 50)0 

Proposition 2.1: Any special gauge transformation 
leading from a local and covariant gauge to a local and 
covariant gauge 

{At",H,( , ),H'}-{A2",H,( , ),H'} 

with the properties that 

(i) the commutators 

[At", F tpa], [Ab F2pa] 

are multiples of the identity operator, 

(ii) the spectral condition holds in the stronger form 
(iv'), 

(iii) the vacuum >¥ ot is a cyclic vector for At satisfies 
(2. 50). 

Proof: Consider the two-point functions 
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(2.51) 

and 

(2052) 

The assumed covariance implies according to the Lem
ma 1 of Ref. 9, that these may be written as 

(opg "a - 0ag "p)Ft (x), 

(opg"a- 0ag"p)F2(x), 

(2.53) 

(2054) 

respectively, where Ft and F2 are Lorentz invariant 
distributions. 

Now the states '.¥o and <1> = Ft".(f)'.¥o belong toH' and 
thus condition (2.47) gives 

(2. 55) 

From the equality of (2. 51) and (2. 53), and of (2. 52) and 
(2.54), together with this equality (2055), we get that all 
second derivatives of Ft are equal to those of F2 and 
therefore, up to a linear function, Ft and F2 are equal. 
The linear function is constant since it must be Lorentz 
invariant and the constant is inSignificant in the evalua
tion of (2. 53) and (2. 54), so we may assume Fl = F 2 , 

i. e. ; 

(2056) 

Under the assumption that [At", F tpa] and [At", F2pa] have 
commutators that are multiples of the identity, one can 
express 

(2.57) 

in terms of a sum of products that always include a fac
tor (2.56). Thus, (2.57) is zero. Since the vacuum is 
a cyclic vector for At", 

(Ftpa - F2pa)'.¥ 0 = O. 

Thus, by locality and a Reeh-Schlieder theorem one 
concludes that F lpa and F 2pa, coincide. (For further 
details of this argument see p. 165 of Streater
Wightman. 14) 

There is a practical sufficient criterion for a special 
gauge transformation that starts from the Gupta
Bleuler gauge. 

Proposition 2.2: If AI" (x) =A" (0; x) and A 2" =A" has 
the two-point function 

('.¥ 0, A" (x)A.(y)'.¥ 0> 

=- [87T3]-lJ d4ko(k2)8(k)exp[-ik· (x-y)] 

x{g ".+ f".(k) + f." (k) + f : (k)f. p(k)}, 

where f". satisfies 

and 

(2.58) 

(2059) 

(2060) 

on C., then A 2" is unitary equivalent to a field connected 
with AI" by special gauge transformation. In particular, 
if f".(k) is of the formf".(k) = F.(k)k" and 

(2.61) 
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then the special gauge transformation may be written 
in the form (2.7). 

Proof: Consider the field B(f) defined by 

(B(f»I!Yn) ••• " (k 1 • ·.kn)=11f {vn+1 r dno(k) 
"1 n lc. 

(2.62) 

If it is added to A(O;f), we get a field which has the 
two-point function coinciding with (2.58) because 

('1' 0, B(f)A (0; g)>¥ 0> = - 1r f c• dno(k)jp(k)fpv(k)gV(- k), 

('1' 0, A(O;f)B(K)>¥ 0> = - 1r fc. dno(k)Jp(k)fvp(k)gv(- k), 

('1' 0, B(f)B(g)>¥ 0> = - 1r fc• dno(k)jP(k)f/(k)fva(k)gv(- k). 

This operator is defined and bounded on EB!oH(n) for all 
N and satisfies B(fr=B(ft ther~. The condition (2.59) 
guarantees that the expressions r(k)f/(k) and 
jP(- k)f/(k) which appear in (2.62) are, when restricted 
to C., the mantle of the future light cone, functions in 
L 2(dn o(k)). 

If we define a closed subspace of H by the 
requirement 

it defines the same subspace H' as (2.29), by virtue of 
(2.60). 

Notice thatA,,(O;x) andA,,(O;x)+B,,(x) do not yield 
the same electromagnetic field operator in general. 
However, the field operators they yield have identical 
matrix elements in H', so the correspondence A" (0; x) 
-A,,(O;x)+B,,(x) is a special gauge transformation. 

We can now prove the equivalence of A" (x) and 
A,,(O;x) +B,,(x). We define a linear operator Vas map
ping '1'02 onto '1'01 and P(A2(f»>¥02 onto P(A(O;f) 
+B(f»>¥Ol' By the above arguments V is a scalar prod
uct preserving bijection. Whenf"v=Fv(k)k", one de
fines an operator X(x) 

(x (f)>¥ ~~) ••• "n (kl ••. k n) 

=iV1T{vn+1 fa dn0(k)J(k)r(k)>¥~~'P""n(kkl" ·kn) . 
+ ~ tF".(k)j(-k)>¥~nl:~)'r:""" (k1 ••• kj ••• k n)} 

v n J'O J j n 

and one easily verifies that the field A,,(O;x) - o"X(x) 
has the same two-point function as the field A 2" (x). The 
argument then proceeds along the same pattern as be
fore, for the field B" (x). 

Remark: We conjecture that every special gauge 
transformation from the Gupta- Bleuler gauge is of the 
form given in this proposition. 
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Examples of gauges obtained by the special gauge 
transformation (2.62) 

1. The Kalfen-Rollnik-Stech-Nunnemann gauge 
AjJ. (M,X)28-30 

Here 

('1' 0, A" (x)Av(y)>¥ 0> = - [g "V + 2M a" avl~ D(')(x - y). (2.63) 
1 

As already remarked in (2.40), this gauge is obtained 
by setting 

(2.64) 

This is the only special gauge transformation which 
preserves locality and covariance. 

2. The Evans-Fulton gauge 3
! 

Here 

('1' 0, A" (x)Av(y)>¥ 0> = - (g "v + a" ovo-2 - n"avo-1 

-nvo"o-I)~D(')(x-y) (2.65) 
1 

where n is a time like vector, a = nIL a", and 0-1 is de
fined through its Fourier transform. This gauge is ob
tained by setting 

F,,(k)=-n,,/n.k. (2.66) 

Condition (2.61) is satisfied because n is timelike and 
k is lightlike, so n' k *" 0 on C. for k *" 0 and F" (k)g(k) 
and F,,(k)kvg(k)EL2(dno(k)) for eachg(x)E5(1R4). 

3. The Valatin gauge32 

Here 

This gauge is obtained by setting 

F,,(k)=-(nn:k + (n~~)2)' 

4. Coulomb type gauge 

We choose 

f (k)=- _ (k"-n,,n·k) (kv-nvn'k) 
"V n"nv n.k nk' 

(2.68) 

(2.69) 

where nv is a timelike 4-vector for which, for Simplici
ty, we choose the form nIL '" (1, 0, 0, 0). Then by the con
struction described in the proof of Proposition 2.2, we 
obtain a field A~ (x) such that 

divAC= 0, 

A~= 0, 

o"A~=O, 

(2.70) 

(2.71) 

(2.72) 

as operator equations. Moreover, the two-point function 
for A~ is 
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(if 0, A~ (x)A~(y)if 0> 

o ~~" _ '~';HD<.>(%- y), 

if J.J. = 0 or v= 0 
(2.73) 

i,j=1,2,3. 

It is not difficult to recognize that A~ is essentially the 
Coulomb gauge potential defined in the Gupta-Bleuler 
gauge. The vectors of the set L, obtained by applying 
polynomials in A~ (f) to the vacuum, have components 

if(n) ={if~~)"'"n(kl''' k n)} such that 

if(n) ••• " = 0 if any J.J.j = O. 
"1 n 

(2.74) 

(2.75) 

(2.76) 

Thus L CH', AC(f)fi.' CH', AC(f)H" = O. The Hilbert 
space closure L C = L is a subspace of H' on which the 
sesquilinear form ( . , . > is positive definite. In agree
ment with Theorems 1. 1 and 1. 2, A~ is a nonlocal and 
noncovariant operator. Moreover, A~ is not irreducible 
in H. The restriction of the theory to L C gives exactly 
the Coulomb gauge. 

Finally, it is worth remarking that the gauge trans
formation induced by (2.69) cannot be written in the 
form (2. 7) and that 

(2.77) 

The Landau gauge for the free field 

A crucial test of the adequacy of Definitions 2.1 and 
2.2 of gauge and generalized gauge transformation is 
the description of a Laudau gauge. It and gauges related 
to it by special gauge transformations are very impor
tant in practical applications. We make the following 
definition33 

: 

Definition 2.4: Let G". be the two-point distribution 
of the vector potential 

G".(x,y) = (i'"o, A" (x)A.(y)if o>. 
G". satisfies the spectral condition if 

supp[G".(k, l)]c V+X V_, 

(2.78) 

(2.79) 

i. e., if the Fourier transform G ".(k, l) vanishes for k 
outside the future cone and l outside the past cone. 

G ". is called covariant if 

(2.80) 

for all Poincare transformations {a, A}. It is called 
transverse if 

(2.81) 

A gauge for the free electromagnetic field is called a 
Laudau gauge if it is covariant in the sense that the vec
tor potential satisfies 

U(a, A)A" (x)U(a, At1 =A· "A. (Ax +a) 

and transverse in the sense that 

J. Math. Phys., Vol. 15, No. 12, December 1974 

and has a G". satisfying the spectral condition. 

In a Laudau gauge the G". is automatically covariant 
so it depends only on the difference variable G".(x, y) 
= G".(x - y), and the spectral condition reduces to 

suppG".(k) c V+. 
The form of the two-point distribution in a covariant 

gauge satisfying the spectral condition is fixed by the 
following lemma which we state as generally as we know 
how so that it is applicable to coupled as well as free 
fields. Notice that the hypotheses of the lemma do not 
include the free wave equation for A" nor the trans
verseness condition (2. 81). Furthermore, the spectral 
condition is a little different from (2.79), and one can 
draw no cOllclusion about the support of the Fourier 
transform G, of the invariant distribution G, occurring 
ill (2.85). With the spect~al condition (2.79), both F and 
G would have support in V+. 

Proposition 2.3: Let A" (x) be defined as an operator
valued distribution in a Hilbert space H, which is 
equipped with a sesqui-linear form (. " >. 

Suppose 

(i) In H there is a continuous representation of the 
Poincare group {a,A}- U(a,A) such that 

U(a,A)A,,(x)U(a,At1 =A·"A.(Ax+a) (2.82) 

and U(a, A) is unitary with respect to ( . , . >. 
(ii) There exists a unique vector i'" 0 in H invariant 

under U(a, A). 

(iii) If F"v=iJ"Av - iJ,.A" then for all iiJEH the Fourjer 
transform of (iiJ,F".(x)if o> has support contained in V+. 

(iv) PCT symmetry holds, i. e., there exists an anti
linear operator e, antiunitary with respect to ( . , . >, 
such that 

and 

eA,,(x)e-1 = -A,,(-x). (2.84) 

Then 

(2.85) 

where F and G are Lorentz invariant distributions. The 
Fourier transform of F has support in V+. 

Proof: The analysis runs parallel in part to that 
carried out in Refs. 9 and 11. The first step considers 
the two-point functions 

GK),,, (y - x) = (if 0, AK(x)F),,, (y)if 0>' 
By virtue of the spectral condition (iii), the GK ),,, (x) can 
be written as boundary values of functions holomorphic 
in the variable z =X +i1] in the tube T+ which consists of 
all z such that 1] E V+. The holomorphic functions will be 
denoted GK),,,(z). The same theorem that asserts the 
existence of GK),,,(z) says that as z approaches the bound
ary of T+, the absolute values I GK),,, (z) I grow at worst 
as a power of the Euclidean distance to the boundary. 34 

The relativistic transformation properties (i) and (ii) 
imply that the GK ),,, satisfy 
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AVKA/A/·GK).", (x) = Gvpa(Ax) , 

an equation that also holds for the holomorphic functions 
throughout T +0 There is a standard theorem on covariant 
families of holomorphic functions, 35 which assures us 
that the GK).", (z) can be expanded in the standard 
covariants 

(2.86) 

with uniquely determined coefficients that are holo
morphic functions of z2 for z E T+, bounded by a power of 
Iz21 as z approaches the boundary of L. Because of 
the antisymmetry of GK).", in the indices All only the co
efficients of antisymmetric combinations of the (2. 86) 
are nonzero and, therefore, 

(2.87) 

By using a standard trick, one can rewrite this with the 
differentiation o/aza replacing za: 

GK).",(z) = (gK'" A -gK)'-OO "') F(z2) +eK).",pf F1(Z2) 
uZ Z zp (2.88) 

where F(Z2) is defined by 
2 

F(z2) = t f;' G(!;) d!; (2.89) 
o 

and analogously for F 1• The path of integration goes 
from some arbitrary fixed point z~ to z2 without touch
ing the positive real axis; such a path can be constructed 
using vectors in T+. Passing to the boundary by the 
limit process lim).~o GK).",(x+iA1)) with 1)E V+, one obtains 
from representation+(20 88) of GKX",(z) a representation 

GKX", (x) = (gK", ax -gKxo",)F(x) +EK).",PopF1(x) (2.90) 

where F and F1 are Lorentz invariant tempered 
distributions. 

Now FK). = o,.Ax - 0XAK' so oKe/",vF",v= 0 is an operator 
identity. It implies 

OKe/"'VGp",v(x) = O. (2.91) 

When the right-hand side of (2 090) is inserted into 
(2. 91) only the term in F1 survives. It yields 

(Ogx", - o>..o",)F1(x) = O. (2.92) 

Thus F1 is a constant and does not contribute to (2090). 
[To see this take the trace of (2. 92) to get OF1 = 0, and, 
therefore, o).o",F1 = O. Then note that oxo",F1 = 0 implies 
that F1 is a constant plus a linear function of x. How
ever, the linear function must vanish since F1 is 
Lorentz invariant. ] Thus, 

(2.93) 

Next consider the two-point distribution of the vector 
potential, writing 

(2.94) 

By taking the curl of (2.94) in its second argument, we 
get an alternative expression for GKX", (x) 

GKx", (x) = (gK", ax - gKxo",)F(x) + O).HK'" (x) - ° ",HKX(x). 

(2. 95) 

Comparison with (2.93) yields 

(2. 96) 
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A standard theorem of distribution theory now applies; 
it says that H must be the gradient of a scalar in its 
second index (see Ref. 36, p. 59) 

(2.97) 

where HK , K = 0, 1, 2, 3 are some tempered distributions. 

Finally, PCT symmetry implies 

(2.98) 

so 

(2.99) 

and that implies by the same theorem of distribution 
theory 

HK(x) = °KG(X). (2.100) 

This completes the proof of the formula (2085). It re
mains to show that G may be chosen Lorentz invariant 
without affecting (2.85). 

The Lorentz transformation properties of the vector 
potential assumed in (i) and those of the vacuum as
sumed in (ii) imply, when combined with the Lorentz in
variance of F proved above 

(o",ovG)(x) =A\A\(OKOXG)(Ax), 

i. e. , 

(2.101) 

Thus, G(x) differs from G(Ax) at worst by a constant 
plus a linear term in x 

G(x) - G(Ax) =c(A) +d(A)"'x",. 

Comparing this with 

G(Ax) - G(A1Ax) = c(A1) +d(A1)'" (Ax)", 

and 

we see 

c(A1A) = c(A) + c(A1), 

d(A1A) = A -1d(A1) + d(A). 

(2. 102) 

(2.103) 

(2. 104) 

(2. 105) 

(2. 106) 

c(A) and d(A) are infinitely differentiable functions of A. 
[To see this, one first smears (2.102) with a test func
tion ¢(x) such that f x'" ¢ (x) = 0, Il = 0,1,2,3, and f ¢(x) dx 
"* O. Since in the resulting identity 

G(¢) - G(A¢) = c(A) f ¢(x) d4x 

the left-hand side is infinitely differentiable in A, so is 
c(A)o A similar argument works for d(A). ] 

Since the restricted Lorentz group has no nontrivial 
one-dimensional representations c(A) = 0 for A E L:. For 
Is, because Is2 = 1, we have 0 = 2c (Is); so c (A) = 0 for 
AEL'. 

As far as d(A) is concerned, there are nontrivial solu
tions; for example, 

(2. 107) 

where n is any real vector. However, a term of this 
form can be eliminated by subtracting n'"x", from G(x), 
an operation that does not affect the validity of (2.85). 
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That the only nontrivial solutions of (2.106) are of the 
form (2.107) is well known. 37 Nevertheless, for the 
convenience of the reader we have given a direct proof 
in Appendix A. This completes the proof of Proposition 
2.3. 

If instead of the spectral condition (iii) of Proposi
tion 2.3, we imposed the stronger spectral condition 
(2. 79), we could conclude that the support of the 
!:ourier transform (; of G lies in the future light cone 
V+. 

There is one evident arbitrariness in the functions F 
and G occurring in PropOSition 2.3. They may be al
tered by the transformation 

F(x) - F(x) +c, G(x) - G(x) - kx2 (2.108) 

where c is any real constant, without affecting the valid
ity of (2.85). This will be used in PropOSition 2.4 to re
duce F to standard form. 

Now we turn to the consequences of the free Maxwell 
equations and the condition that A" be transverse. 

Proposition 2.4: If a quantization of the free Maxwell 
equations according to Definition 2. 1 is given, then the 
field operator F.), satisfies 

(2.109) 

which, if the gauge is covariant, implies that the F of 
(2.85) satisfies 

(2.110) 

where cl and C3 are some real constants and cl is posi
tive. Without loss of generality C3 may be taken zero. 
With the conventional normalization of the electromag
netic field c 1 = 1. 

If, in addition, the gauge is transverse, then the other 
invariant function G in (2.85) satisfies 

G(-x) =clr1n(+)(x). (2.111) 

The most general solution of this equation is 

where GHom is an arbitrary invariant solution of 

OGHom = O. (2. 113) 

Consequently, in a Laudau gauge the free vector po
tential, which satisfies the spectral condition (2.79) by 
Definition 2.4, has a two-point function 

('I' 0, A" (x)Av(y)'I' O>L 

= - [g"v - o"ov(O·l- 2M)]i~ln(+)(x - y) 

=-g"vr1n(+)(x-y)+o"ovG(y-x) (2.114) 

with 

G(- x) = (4~)2 [log Ix2 1- ilT sgnxOe(x2)] - 2Mr1n(+) (x) 

where cl has been chosen equal to one. 

Proof: By assumption (d. iii) of Definition 2.1, 'l'oEH'; 
by assumption (d. ii), F"v(f)'I'oEH', and so from (2.44), 
(2.109) follows. 

Now assuming the gauge is covariant, the hypotheses 
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of Proposition 2.3 hold and so the standard form (2.85) 
for ('I'o,A,,(x)Av(y)'I'o> may be inserted in (2.109). After 
some algebraic reduction the result is (g),vo" -g),,,ov)OF 
= 0 which implies 

(2. 115) 

where C2 is some real constant. The polynomial tc2x2 

is a particular solution of this equation. Thus the gen
eral solution for F(- x) is k2X2 plus an invariant solu
tion of the homogene~us equation whose Fourier trans
form has support in V+. Every solution of the homo
geneous wave equation with these properties is of the 
form 

(2.116) 

(For a proof, see for example, Ref. 38, p. 45.) Thus 

F(- x) = - Cli-1n(+)(x) + tC2x2 + C3' (2.117) 

Since in a transverse gauge, (2.85) implies 

0v[F(x) + OG(x)] = 0, 

this form (2. 117) of F implies 

OG(- x) = - F(- x) +c4 

= Cli-1n(+)(x) - t C2xz - C3 +c4' (2. 118) 

To see that C2 must be zero and cl positive, note that 
from (2.93) 

('l1 0, F.),(x)F"v(y)'I'~ 

+ (g.,.gw - g.,g),,,)C2' 

When the left-hand side is regarded as a scalar product 
in H pbys, one can use the SNAG theorem for the space
time translation group to analyze the states of zero 
momentum. 39 If Eo is the projection on the zero-mo
mentum states, one has, if one uses the uniqueness of 
the vacuum, 

('1'0, F.),(x)EoF"v(Y)'I'o> = ('l1 0, F.),(x)'I'o>('l1 o, F"v(y)'I'o> 

= (g."g),v - g.vg),,,)c2' 

But on grounds of Poincare invariance alone 
('1'0' F.),(x)'I'o> = o. Thus, Cz = O. At the same time, be
cause (F,)'(f)'I'o, F.),(f)'I' 0> ., 0, the scalar product being 
positive on H pbys, we have cl ., O. 

If we accept for the moment that 

is the general solution of 

OH(x) =Cli-1n(+)(x), 

then the general solution of (2.117) is clearly 

G(- x) = H(x) + t(C4 - C3)XZ, 

(2.119) 

(2. 120) 

(2. 121) 

the contributions to F and G from the terms proportion
al to c3 exactly cancel when they are combined in (2.85). 
It is for this reason that we may take C3 = 0 without loss 
of generality. The term proportional to c4 yields the 
constant g "vc4 when inserted in (2.85). Because Poin
care invariance implies ('1'0' A" (x) 'I' 0> = 0, we conclude 
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C4 = 0; but the argument has to be different from that 
leading to C2 = 0, because A" (f)~ 0 is not, in general, a 
vector of H' and the translation operator is only unitary 
with respect to the indefinite form ( . , . > in H. In fact, 
since the argument is much more easily given after we 
have constructed the Hilbert space H(1) in the Laudau 
gauge, we delay the proof until that point. 

There are many ways to derive the formula (2.119) 
for H(x). 0ne instructive procedure is the following. 
Note that since 

(lJ + m 2)c, (+)(m2, x) = 0, 

(0 +rn2) a ~2 c, (+)(m2, x) = - c, (+)(m2, x). 

This suggests that H(x) might be defined as 

i~ c,(+)(m2,x)i 
am m2=O 

(2.122) 

(2. 123) 

However, a direct evaluation shows this quantity is 
infinite. Nevertheless, the infinity in (2. 123) is inde
pendent of x, so its derivatives are finite and well de
fined. To see this in detail, it is convenient to work 
with the analytic function whose boundary value is 
c,(+)(m2,x), 

(+)( 2 ) m 2 Hp)(imr-z'l) c, 11'1 z = - ---A...,-"-,",==:.......!. 
, 87T im-./_ z2 

(2.124) 

wherez=x+iy. Now40 

HP)(miV::ZZ) JJ(miV::ZZ) Y1(mi..,cz2) 
mi..J- Z2 = mir-zr + m-./_ Z2 

(2.125) 

and 

Y1(miv:::-i2) = __ 2_ +....!. '£ (m
2
z

2/4r 
mir-zr 7Tm 2z 2 27T r=orl(r+1)1 

x[log(m2z2/4)-l/J(r+1)-l/J(r+2)]. 

(2. 126) 

Thus, c,(+)(m2,z) has the singular part 

i m2i ro [(m2z2/4)r] [ m2z2] 
- 47T2Z 2 + 167T2 ~O r! (r + 1)! log [-4- , (2,127) 

This analytic function has a well-defined limit 
- i[ 47T2 z2]-1 as m 2 - 0+, but its derivative with respect to 
m2 does not, since a/am2 (m2 10gm2) - co as m2 

- 0+. 
The deletion of (m2i/167T2) logm2, a term independent of 
Z2, leaves an expression whose derivative with respect 
to 11'12 does have a limit as m2 - 0+. Thus, one can de
fine a finite part of (2, 123) as 

1 
- 167Tz log(- Z2) + const (2,128) 

which leads directly to the formula (2.119) for H(x). 
This completes the proof of Proposition 2.4 except for 
the argument that c 4 = 0, which is to come later. 

We now turn to the construction of <I>oK space rep
resentations for Laudau gauge. As compared with 
Gupta-Bleuler gauge two-point functions, the Laudau 
gauge two-point functions are more Singular. Whereas 
the Gupta-Bleuler gauge two-point functions involve the 
integral of test functions j"(k) and their components 
along k, k"j"(k), over the light cone C+, the Landau 
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gauge two-point functions also involve derivatives 
a/ak" lV(k). Consequently, if we attempt to use a Laudau 
gauge two-point function (A(f)~o,A(g)~O>L to define a 
sesquilinear form on the Hilbert space H(1) defined in 
(2.18), it will be unbounded. Explicitly, by Fourier 
transforming (2.114), we obtain 

(~o, A(f)A(g)~ O>L 

=-7T f dOo(k)~"(k)[g"v-2Mk"k"]gv(-k) 
-i (a~v k" + a!" k~ [j"(k)i"(- k)]l (2.129) 

Here we have a choice. We can either alter the defini
tion of the scalar product (. , . ) so that it contains ap
propriate derivatives and (2.129) becomes bounded rela
tive to it, or, alternatively, accept the form as only 
densely defined, but show that the basic constructions 
can still be carried out. A mitigating circumstance for 
the latter possibility is that the form (2, 129) reduces to 
the Gupta-Bleuler form when it is restricted to f and g 
such that k"l,,(k) = ° or k"g,i- k) = ° for k in a neighbor
hood of C+. We will work out the former possibility in 
detail. 

We want to introduce Single particle wavefunctions 
whose components involve both a vector valued function 
l" (k) and such quantities as k" a/ak" lV(k) so that (2.129) 
can be written as a bilinear form in the components. 
Notice that (2. 129) can be rewritten 

(~o,A(f)A(g)~o> 

= 7T J dOo(k){j" (k)[ - g"V + 2Mk"kV]gv(- k) 

- [F" (k)i" (- k) + i" (k)G" (- k) ]}, (2.130) 

where 

(2.131) 

This suggests that one introduce the eight component 
wavefunction 

the scalar product 

{3 = 0, 1, ... , 7, 
fJ.=0,1,2,3, 

(1) 1. ~--(<I>,~) = c dOo(k) L1 <I>",(k)~",(k), 
+ ~=O 

and the sesquilinear form 
7 __ 

(<I>,~><1>=Jc dOo(k) 6 <I>",(khl",a~a(k) 
+ ClIo a=o 

with 1) the 8 x 8 matrix 

1) ={~" jg"v}, g;:-ro 

(2. 132) 

(2. 133) 

(2.134) 

(2.135) 

Let H(1) be the Hilbert space obtained by completion in 
the metric (. " )(1) defined by (2.133), starting with the 
set of vectors given by (2. 132), with j" E S(lR4). Then 
( . " > (1) is a bounded sesquilinear form densely defined 
on H(1) which can be extended by continuity to all of H(1). 

In fact, (<I>, ~> (1) = (<I>, 1)~)(1)o 

If o"f"(x) = 0, then the first four components of the 
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corresponding ip satisfy L:~ok/lip/l(k) = 0 while the last 
four are of the form k/l_4h(k), 13 = 4,5,6,7 and the same 
is true of the ip's obtained as limits of these. This sug
gests that the closed linear subspace that consists of 
such vectors be defined as H(1)I. Clearly, (.,.) is non
negative on H(ll/. The subspace H(ll" consists of those 
vectors that satisfy in addition ip/l = kBhl (k), 13 = 0, 1,2,3. 

There is a representation of the Poincare group in
duced in H(ll by the transformation law of the fields: 

3 

(U(1)(a, A)ip)/l(k) = exp(ik· a) detA ~ A/lY 

y=o 

X Y' , 
{

ip (A-l k) A E L' 

ipy(_A-1k), AEL', 13=0,1,2,3; 

(U<il(a, A)ip)/l(k) = exp(ik. a) detA 

13=4,5,6,7. (2.136) 

This representation has been so constructed that it 
leaves the form ( . , . ) (1) invariant. 

The Hilbert space H is the symmetric ipOK space 
]s(H(l» built overH(l), i.e., the Hilbert space defined 
by (2.23)- (2.26) with the old H(1) replaced by the HU ) 

just defined. The scalar product is defined by (2. 27) 
with the indices now running from 0 to 7 instead of 0 to 
3. The indefinite sesquilinear form is defined by 

X .... (n) (k . •• k ),T, (n) (k· •• k ) 
"''''I···'''n 1 n "'/le··/ln 1 n • (2. 137) 

We may write (ip, >It) = (ip, 1]>It) where, with a slight abuse 
of notation, 1] stands for the Hermitian operator 

(1]>It)(n)=-ry0~(n), n=1,2,· •• , 

which lets the matrix 1] act on each of the matrix indices 
of >It(n). It is worth noting that 1] has an inverse that is a 
bounded operator on H, because the matrix 1] has the 
inverse 

The subspace H' is defined by 
3 

~ k~jip~~! .• /l (k1···kn)=0 
/lj=O n 

and 

(2.138) 

.... (n) (k • •• k ) - k .... , (n) r\ (k • •. r'>k ••• k ) "'Be··Bn 1 n - j(/l;-4)""st···/lj···/ln 1 j n , 

i3j = 4,5,6,7, (2.139) 

for some j and therefore by the symmetry for all j. The 
elements of H" satisfy (2.139) for i3j = 0,1,2,3 with the 
subscript i3j -4 replaced by i3 j • 
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The representation U(1) defined above in H(1) by 
(2.136) induces a representation inH which is unitary 
relative to the form ( . , . ). 

The vector potential operator is defined by analogy 
with (2.31)- (2.35), 

AL(f) =a(II~(M)f) +a+(II~(M)f), (2.140) 

with the annihilation operator a defined by 

(a (x)>It) ~~) ••• "'n (kl .•• kn) 
7 

=v'n+1J dSlO(k) ~ X",(k)1]"'/l>It~';:p •• ", (kk1 .. ·kn). 
0:,8=0 n 

The creation operator a+ is defined by 

(a+(ip)'.l!)~~) ••• "'n(kl··· kn) 

(2.141) 

1 n ~ 
= r- ~ ip",.(k j )>It"'I(n-l) ••• :;;'j .••• '" (k1·• ·kj · •• kn) (2.142) 

vn 3=1 J n 

The Landau gauge mappings lI;(M) are defined by 

(II; (M)f) " (k) = -.f7i {k~:~; + MkILkJV(± k). (2.143) 

It is easy to check that, with this definition of A (f) and 
the vacuum state >It 0 = {1, 0, ... }, the two-point function 
(\lIo,A(f)A(g)>It o> is the Landau gauge two-point function 
(2.129), andAL(ft=AL(j). Furthermore, the trans
formation law 

holds with 

({a, A}f)IL (x) = detAAv "fv(A -1(a, A». 
The Landau gauge vector potential satisfies the 

Lorentz condition 

(2. 144) 

(2. 145) 

(2. 146) 

as an operator identity in H. The verification is easy 
from the definition [insert the test function I" (x) 
= o"h(x)] provided one recognizes the identity 

f dSlo(k)k" o!JI(k) = - 2 f dSlo(k)h(k). 

The validity of (2.147) follows from the identity 

z,,_o-D(+)(z) = - 2D(+)(z) 
OZ" , 

(2.147) 

(2. 148) 

valid for z in the future tube, which is easily checked 
from the explicit form of D(+)(z) 

D(+) (z) = - i[ 41T2Z 2]-I. (2. 149) 

The electromagnetic field computed from the Landau 
gauge vector potential (2.140) satisfies 

OIL F~v(x) = o.,B(x) (2.150) 

where the local scalar field B(x) is chosen so that 

and therefore for any scalar test function g, 

B(g) = a(II~Lg) + a+ (II~Lg) 

with 

(2.151) 

(2. 152) 
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(II~Lg) a(k) = v'1T{ ~ 2ik" i(± k)}' (2. 153) 

The appearance of B(x) is a standard feature of quanti
zations of the electromagnetic field in the Landau gauge 
starting from an action principle. 17,41 

There is one aspect of the Hilbert space H just con
structed in the Landau gauge which is essentially more 
complicated than in a Gupta- Bleuler gauge. That is the 
characterization of the local behavior of the compo
nents ib" on the light cone C+. In a Gupta-Bleuler gauge 
they are simply locally square integrable with respect 
to the measure dOo(k). However, in the Landau gauge 
the initial set of wavefunctions from which the general 
element of H is obtained,by completion, involves com
ponents k" a/akv r(k) + a/ok'" (kvr(k)) and it appears dif
ficult to characterize the restrictions on the local be
havior of the ib 8(k), (3 = 0, 1, 2,3, which result from the 
requirement that the components involving derivatives 
converge in the mean in L 2 (dOo). It is possible to con
struct an alternative formalism in which the wavefunc
tion has many more components but with simply stated 
local regularity properties (and ( . , .) is still bounded). 
One simply puts all thirty-eight quantities 1 ib" 1

2
, 

1 k"ibV 12, 1 a/ok" ibV 12 into the norm defining H. The only 
delicacy is that the derivatives a/ak o ib" need not con
verge to a function which is a derivative. We omit the 
details. This completes the construction of the operator 
formulation of the Landau gauge. 

Now we return to the proof of C4 = 0 in (2.118). We 
use the -experience gained in the above reconstruction of 
H and A" given the two-point function (2. 129) as a guide 
to an analogous construction in the presence of C4' We 
write 

~ 

(ib, \]i)(1) = rhs(2.133) + iC4i 6 j"(O)g,, (0), 
,,=0 (2. 154) 

(ib, \]i) (0 = rhs(2. 134) + C4j" (O)g" (0). 

The ibOK space H is constructed just as before but with 
the altered scalar product ( . , . ) <t) and ( . , 0) (1). We have 
(ib, \]i) = (ib, 11\]i) where 11 is the old 11 together with multi
plication by sgnc4 in the new zero momentum term. 
Thus the new 11 also has an inverse. Next for each test 
function g E 5 (JR4) we define a linear functional Fe: 

F,(\]i 0) = 0, FK(A(f)\]i 0) = c,g" (o)i"(O), 

FK( :A(!1)" • A(fn) : \]i 0) = 0, n> 1, 
(2.155) 

FK is clearly uniformly bounded on the dense set of H 
spanned by :AL (f1) .. ·AL (fn):\]io, n=0,1,2,·oo. Thus, 
there exists a vector ibe such that 

FK(\]i) = (ibK, \]i) = (11-1ib,., 11\]i) = (11-1ib" \]i). (2.156) 

Notice that 

so 

(2. 157) 

But because FK only depends on the zero-momentum val
ue of g, F(a,1)e= FK; so ib(a,1lI'= ibK. Thus, 11-1ibK is in
variant under the translation group and, if there is to 

J. Math. Phys., Vol. 15, No. 12, December 1974 

be only one translation invariant state \]i 0 in H, the vec
tor 11-1ib,. must be proportioned to \]io, say 11-1ibK=AK\]iO' 
Thus, 

(2.158) 

and since by the Lorentz invariance of \]io,(\]io,A,,(x)\]io) 
= 0, we conclude that C4 = 00 

There is only one point of this argument that deserves 
further comment. We have constructed one particular 
Landau gauge yielding the two-point function (2.114) with 
the extra term g"vc4 and have verified within it that 
uniqueness of the vacuum requires c 4 = 00 How do we 
know there is not another gauge yielding the same two
point function within which C4 does not have to be zero? 
The answer is that the gauge is unique up to iso
morphism, i. e. , 

Proposition 2. 5: If {A",Hb (. " )bHH and {A2",H2, 
( . , .) ,HH are gauges for the free electromagnetic field 
that yield the same two-point function, there exists a 
mapping V of H1 onto H2 which satisfies 

(Vib, V\]i)2 =(ib, \]i) 1 

for all <1>, >It EH1 

VHf =Hf, VA1" (x)V-1 =A2,,(x). 

(2. 159) 

(2.160) 

The proof of this proposition runs parallel to that for 
the standard result of the general theory of quantized 
fields that asserts the unitary equivalence of two the
ories given the equality of their vacuum expectation 
values. 14 

We have already remarked in connection with the 
Gupta-Bleuler and Coulomb gauges that, in general, 
a gauge transformation cannot be realized as a special 
gauge transformation of the form (2.7). That this state
ment applies in particular to Landau and Gupta- Bleuler 
gauges is the content of the following propOSition. 

Proposition 2.6: There is no special gauge transfor
mation of the form (2.7) leading from a Gupta-Bleuler 
to a Landau gauge for the free electromagnetic field. 

Proof: If such a transformation eXists, it is possible 
to realize the Landau gauge vector potential A" L as an 
operator valued distribution in the same Hilbert space 
as the Gupta-Bleuler vector potential A". Let \]io be the 
vacuum of the Gupta- Bleuler gauge. Then 

(\]io, a" F,,~(x)AA(y)\]io) 

= (\]io, [OA~(x) - avaAAr(x)]AA(y)\]iO) 

= O(\]io,A~(x)AA(y)\]iO) =(\)io,A~(x)OAA(y)\]iO) = 0 (2.161) 

where in the second step the transverseness of At has 
been used and in the last the fact that the Gupta-Bleuler 
potential satisfies the waveequation. 

On the other hand, for the Gupta-Bleuler gauge 

(\)"10' a" F "v(x)AA (y)\]i 0) = - (\]i 0, av(a" A,,)(x)AA (y)\]i 0) * O. 

Thus, 
(2. 162) 

(2.163) 

so At and A" cannot be related by a special gauge 
transformation of the form (2. 7). 
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Starting from the Landau gauge one can obtain by 
special gauge transformation a variety of other useful 
gauges. 

Proposition 2.7: Any gauge for the free electromag
netic field in which the two-point function has the form 

(~o, AI' (f)Av(g)~ 0) 

= 7f f dno(k) exp[ - ik· (x - y)] 

X{JJ> (k)[- g "v + 2Mk J>kv] gV(_ k) 

+~(a!"kv+ a~vkJ» [jJ>(k)?(-k)]}, 

a and M being real constants, is obtainable from 
Landau gauge by special gauge transformation. 

(2. 164) 

PrOOf: The proof may be carried out by explicit con
struction of the field A" in the Hilbert space, H of a 
Landau gauge with M = 0, as displayed in (20131)
(2.143): 

A(f) = a(II+(a, M)f) + a+(IUQ, M)f), (2. 165) 

where a and a+ are the annihilation and creation opera
tors defined in H by (2.141). The mappings II±(Q, M) are 
defined by 

(II+(QI,M)f)s(k) = f1fj [g"v;Pk"kv]jvik ) AV t 
a{~akJ>kv+kJ> akV) + mJ>kv}f (k)~ 

(2.166) 

(IUQl,M)f)s(k)=f1f~[gI'v-~kI'kv]~V(-k) AV l, 
l{a(k" akv + akJ> k0 + m"kv}f (-k)~ 

where a = Q and M = P + T+ pa. It is an easy calculation to 
check that with this definition of A" one gets the two
point function (2.164), provide one remembers the 
identity (2.147). 

Examples: 

1. The Landau gauge: a = 1. 

2. The Fried-Yennie gauge42
: a = - 2 M = O. Here 

(~o, AI' (x)Av(y)~ O)FY = - [g J>V + 2a J>a vo-1 ]r1n(+)(x - Y)o 

(2. 167) 

3. Reducible Gupta-Bleuler type gauges: a = O. 

For a:= 0, one gets a vector potential AI' having the 
two-point function of Gupta-Bleuler gaugeo However, 
the vacuum is not a cyclic vector for this vector poten
tial. The situation is analogous to that for the Coulomb 
type gauges [described at the end of our discussion of 
the Gupta-Bleuler gauge, Example 4, after (2.77)]. 

This concludes our discussion of the free electromag
netic field in the Landau gauges. We believe it shows 
that these gauges can be treated smoothly and with 
mathematical preciSion within the indefinite metric 
formalism. 

Gauges and gauge transformations in the presence 
of charges 

The presence of charges gives rise to new technical 
difficulties in the discussion of gauge transformations. 

J. Math. Phys., Vol. 15, No. 12, December 1974 

The transformation law (2.6) of a charged field l/!(x) 
- exp[iqX(x)]!J!(x) involves the product of an exponential 
of a field and another field. Such an expression in gen
eral does not define a field; to give it a sense one must 
use special prescriptions and argue their effectiveness 
from the special properties of X and l/!. An example of 
the complications in question is the problem of defining 
the exponentiaL If X is a free scalar field, : expiqX: (x) 
defined as a Wick ordered power series is not a tem
pered field but is a Jaffe fieldo 43 If X is not a free field, 
the discussion of the exponential involves hypothetical 
properties of X. Attempts to avoid discussing such prop
erties by dealing always with the in and out fields (which 
are free fields) run up against the difficulty that in 
quantum electrodynamics, because of infrared phenom
ena, the conventional in and out fields belonging to 
charge-carrying fields do not exist, and collision theory 
is only now beginning to reach the stage where an ap
propriate substitute for them can be located. 44-46 

We have no doubt that a really satisfactory discussion 
of gauge transformations in quantum electrodynamics 
must resolve these difficulties. However, at the present 
stage of development of field theory, it seems sensible 
to accept less demanding tests of the adequacy of a 
formalism. If a formulation of a gauge theory makes 
sense to all orders in an expansion in the renormalized 
coupling constant, it would seem reasonable to accept 
it as a basis for investigations independent of perturba
tion theory. We do so in the followingo 

The most important new feature of the coupled theory 
is the presence of a nontrivial electromagnetic current. 
If one follows the ideas of Gupta- Bleuler, part of the 
indefinite metric formalism is essentially the same as 
for the free electromagnetic field. There is still a 
big Hilbert space H equipped with a sesquilinear form 
( . , .) and a subspace H' on which the form is nonnega
tive. As before, Hpbys =H'/H" where H" is the subspace 
of H' consisting of vectors <I> of zero length (<I>, <1» = O. 
However, here the free Maxwell's equations are 
replaced by 

(2.168) 

where r is the electromagnetic current and AVH' CH". 
As before, AV takes different forms in the different 
gauges: A V =- aVa"A" in the Gupta-Bleuler gauges, and 
ailE in the Landau gauge. The different gauges are now 
labeled {A", l/!I,H, ( . , .) ,H'} where the l/!I are a set of 
fields in H such that the vacuum ~ 0 is cyclic for the l/!j 
and AI' together. The specification of the dynamics of 
these theories is completed by the equations of motion 
of the charged fields and the prescription for the source 
terms as functions of the charged field and A". For 
example, in the quantum electrodynamics of a charged 
spin i field l/! 

(- iy"aJ> +m)l/!(x) = f(x) (2. 169) 

where j and f are functions of l/! and A. 

For spin i quantum electrodynamiCS, the renorma1-
ized Green's functions have been defined to all orders 
in renormalized perturbation theory in the Gupta
Bleuler gauge with M:= 0, and are consistent with 
(2. 168) and (2. 169). The crucial point in the proof is 
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to carry out the renormalization in such a way that 
there are no residual infrared divergences and so that 
Ward's identities are satisfied. The problem is posed 
and partly solved in Ref. 47; the solution is completed 
in Ref. 16. An alternative solution is provided by Ref. 
48 which uses the 't Hooft-Veltman renormalization 
method. 49 Although an explicit published proof is not 
known to the present authors, the same arguments 
ought to be extendable to the quantum electrodynamics 
of spin t in the other local covariant gauges. 

On the other hand, for the Coulomb gauge, the 
Green's functions are not expected to be tempered dis
tributions, since the connection between the matter 
field for the Coulomb gauge I/Jc and that for say a Gupta
Bleuler gauge I/J is formally (see Ref. 17, p. 128) 

I/J c(x) = exp{ie[(- At1V· A] (x)}l/J(x). (2.170) 

One could enlarge the framework to consider fields in 
one of Jaffe's classes and then presumably treat the 
Coulomb gauge along with the local covariant gauges; 
we regard that as an eminently reasonable proposal. 
However, that is of little use to us here since we will 
need explicit locality and covariance and the Coulomb 
gauge has neither property. 

The main conclusion of this discussion is that the 
evidence of perturbation theory supports the view that 
the indefinite metric formalism also works for coupled 
electromagnetic and charged fields. Thus, we make the 
following definition. 

Definition 2.5: A gauge for the coupled Maxwell equa
tions is specified by 

(a) operator valued distributions: All' the vector 
potential; j Il' the electromagnetic current; and I/Jh the 
other fields of the gauge in a Hilbert space H; 

(b) a representation U of the Poincare group in H; 
(c) a sesquilinear form ( . , .) on H with respect to 

which U is unitary; 

(d) a distinguished subspace H' EH such that 

(i) The restriction of the sesquilinear form ( . , .) to 
H' is bounded and nonnegative 

(~,~)~O for~EH'. 

(ii) There is a common dense domain DcH' for all 
local observables such that 

(2.171) 

for ailfE 5. Here Fllu(x) = 2IlAu(x) - 2uA ll (x), and 
Fllu(f)=J F llu(x)f(x)d4x, and jll (f) = Jd4xf(x)jll(x) are 
local fields satisfying 

(2.172) 

for all <P, ~ EH' with ~ in the domain of 2AF IlU(f) and 
j(f). 

(iii) The representation U leaves D invariant and 
therefore also leaves invariant the subset D" of D 
consisting of those vectors of zero length. H" con-
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sists of the vectors in H' of zero length (<p, <p) = O. 
Hplrrs =H'/H". There exists a unique vector ~o, called 
the vacuum invariant under the translation subgroup 
of the Poincare group. The vector ~o is invariant 
under the whole Poincare group, lies in H', and is 
cyclic for the fields A", j", and I/Ji' 

(iv) For all if? E H', the Fourier transforms of 
(<p, F"u(x)~o) and (<p,j,,(x)~o) have s~pport contained in 
the closure of the future light cone V+. 

Just as for the free Maxwell equations there is the 
stronger spectral condition. 

(iv/) For all <p EH', the Fourier transform of 
(if?,AIl(x)Av(YtI'o) and of (<p, I/Jj(x)l/Jh)lJ!o) has support 
contained in V+ in the momenta conjugate to (x+y)/2 
and x- y. 

Remark: We have defined Hplrrs as the quotient space 
H'/H". SO defined it is guaranteed to be a pre-Hilbert 
space but not, on general grounds, a Hilbert space, 
i. e., it may not be com~ete. If it is not complete, we 
should define H Plrrs as H' H", the completion. For the 
free field case it is not difficult to show that, in fact, 
H'/H" is complete. For the coupled electromagnetic 
field the question is open. In the following the comple
tion will not be indicated and will be discussed only when 
its consequences are Significant. 

An important aspect of j Il is its relation to infinitesi
mal gauge transformations. Specifically, what is as
sumed here is (a) j" is conserved: 2"j" = O. (This im
plies 2uA" = 0 since 2" 2vF"" = 0 by the antisymmetry of 
F llv' Of course, in concrete cases the conservation law 
of j Il will be a consequence of the equations for the mat
ter field. ) (b) The corresponding charge Q, defined as a 
quadratic form by the limit Q = limR _'" Q R, 

with fd and fR positive, of compact support, and 
satisfying 

(2. 173) 

J fd(xO)dxo=l, fR(lxl)=l for Ixl ",R (2.174) 

is the infinitesimal generator of gauge transformations 
of the first kind. That is, the quadratic form Q defines 
a unique self-adjoint operator, also denoted Q, and a 
field I/J carrying a charge q satisfies 

exp(iaQ)1/J exp(- iaQ) = exp(iaq)l/J. (2.175) 

According to the usual ideas of quantum field theory, the 
domain of Q R as a quadratic form includes all vectors 
obtained from the vacuum by application of polynomials 
in the local fields of the theory smeared with test func
tions of rapid decrease. Thus, if <P and ~ are any two 
vectors from that domain the assumed convergence is 

lim(<p, QRlJ!) = (if?, QlJ!). (2. 176) 
R-", 

The infinitesimal form of (2.168) is 

[Q,I/J]=ql/J, (2.177) 

which under our assumptions implies 

lim(<p, [QR, I/J]~) =q(<P, I/J~). (2.178) 
R-", 

The relations between the one-parameter group exp(i rQ) 
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and the limit expressions (2. 176) and (2.178) for its 
infinite'limal generator have been studied intensive
ly.50-52 We will not attempt to summarize the results 
of those studies. However, we want to emphasize that 
they are all consistent with a mathematical framework 
for the theory generalizing that proposed by Haag and 
Kastler. In it there is a field algebra 11 CO) attached to 
each bounded open set O. It is the algebra of bounded 
operators in H generated by bounded functions of the 
smeared vector potential A ... and charged fields 1jJ. The 
charge defines an automorphism of these field algebras 

uT(A) = exp(i 7'Q)A exp(- i 7'Q). (2.179) 

The next step in the procedure is to distinguish a sub
algebra A (0) of 1! (0) that should play the role of Haag 
and Kastler's local algebra of observables. Here the 
indefinite metric complicates the situation. We expect 
the state space of the theory to be H phys =H'/H" acting as 
state vectors for some algebra .,1(0) of operators acting 
in Hphys' Thus, we have to connect ~(O) with i(O). As 
we will see in the next section there are distinguished 
operators of 11 (0) with a property we will call gauge in
dependence. Each such operator determines a unique 
A in H phys' These are candidates for observables, but 
the set of all gauge independent operators in 11(0) is not 
a candidate for ~ (0) because it does not form a sub
algebra of 11 (0) and the mapping A - A is not an alge
braic homomorphism. We will also define a stronger 
property called weak gauge invariance such that the 
weakly gauge invariant operators do form an algebra 
and to that extent constitute a candidate for ~(O). How
ever, A - A is not an algebraic homomorphism for A 
weakly gauge invariant, so we cannot take the A arising 
from weakly gauge invariant A as constituting A(O). 
We will give yet another more restrictive definition of 
a property called gauge invariance. The gauge invariant 
operators form an algebra and A - A is an algebraic 
homomorphism from it into an algebra of operators in 
H phys' The gauge invariant operators therefore yield 
candidates for ~(O) and i(O). 

Clearly, we have offered no definitive choice for ~ (0) 
and i(O). The main point is that, for the proof of the 
charge superselection rule, it does not matter what 
~(O) is, it does not even have to be an algebra provided 
that every element of ~ (0) has a property that we will 
call gauge independence. We will prove in the next sec
tion that under plausible assumptions every observable 
must arise from a gauge independent operator. We will, 
in any case, refer to ~(O) as the generalized Haag
Kastler field algebra. 

It should be emphasized that gauge transformations in 
the wide sense of Definition 2.2 do not, in general, 
define automorphisms of the field algebra. In fact, in 
such gauges as the Coulomb gauge the basic local com
mutativity property that plays such an important role in 
Haag-Kastler theory does not hold. The question which 
gauge transformations do define automorphisms is open 
and interesting. 

The existence of local covariant gauges that permit 
the construction of a generalized Haag-Kastler algebra 
11(0) provides candidates for the subalgebraAW), and 
therefrom, via the mapping A - A, the algebra .,1(0). If 
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the mapping is an algebraic homomorphism, A(o) will 
satisfy the requirements of relativistic invariance and 
local commutativity. So far no general construction has 
been found for the inverse process: given the i(O) for 
a theory of charged particles to reconstruct (0) and an 
appropriate gauge {A ... , 1jJ;,H, (. " > ,H'} although there is 
no indication it cannot be done. The main trouble ap
pears to be that the detailed dynamics of the theory in 
question must play a much larger role in the construc
tion than in the standard reconstruction theorems of the 
general theory of quantized fields and new ideas appear 
to be necessary to carry through the program of Dopli
cher, Haag, and Roberts. 

In the proof of the charge superselection rule in the 
following section Lemma 2. 1 will be needed. 

Lemma 2. 1 6,7: Let the continuous one parameter 
unitary group defined by the charge operator Q be 
exp(iuQ). (The spectrum of Q consists of integer multi
ples ne of the magnitude e of the charge on the electron. ) 
An element of the generalized Haag-Kastler field alge
bra lJ(O) is said to carry charge q if it satisfies (2.175). 
Then 11 (0) is generated by those of its elements that 
carry definite charge. 

The idea of the proof is that associated with any A 
E 3'(0) there is a family of operators 

(2.180) 

which carry charge ne. An will lie in 11(0) because 11(0) 
is assumed weakly closed. Furthermore, we can re
cover O'T(A) as the weak limit 

N 

uT(A) = lim 6 exp(ine7')An 
N"oo -N 

(2. 181) 

and, in particular, A = uo(A). 

Notice that the compactness of the gauge group of the 
first kind plays an essential role in this argument. (The 
compactness forces the invariant measure on the group 
to be finite and the spectrum of charge to be discrete. 
The fact that the gauge group is not only compact but a 
one-parameter group forces the spectrum to consist of 
multiples of some fixed charge. 51 

Clearly, the content of the above lemma remains true 
if one replaces 11(0) by any of its subalgebras, say 
~(O), provided it is weakly closed. 

By virtue of this lemma if one wants to prove 

(2.182) 

for all A E ~ (0) it suffices to prove it for A carrying 
charge q. 

We are going to interpret the charge supers election 
rule as the validity of (2.182) for all quasilocal A, and 
that deserves some comment. First of all, notice that 
the validity of (2.182) for all A E ~(O) and all bounded 
open sets 0, implies it for all quasilocal A E ~, i. e. , 
all A that can be obtained as norm limits of sequences 
of An lying in some ~ (On) (limn ~~ IIAn - All = 0 implies 
limn~~ 1I00T(An) - G'T(A)II = 0). Thus, it makes no difference 
whether the charge supers election rule is stated as Q 
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commutes with all local observables or Q commutes 
with all quasilocal observables. Second, it is a strong 
physical assumption that the only observables that mat
ter are local or quasilocal. We adopt this as a natural 
definition within the framework of local relativistic 
quantum theory but recognize the possibility that while 
the ideas of Haag and Kastler seem natural and general 
to us there may be alternatives more favored by Nature. 

It should be mentioned that the terminology used to 
describe observables in local relativistic quantum the
ory has not been fixed. One speaks also of global ob
servables which are such quantities as charge, baryon, 
number, and lepton numbers. We take no position on 
this conflict in terminology but point out that the adjunc
tion of such global observables to the quasilocal observ
abIes in no way changes the charge supers election rule 
as long as these global observables commute with each 
other as well as with all quasilocal observables. Such 
global observables are an analog in our context of the 
elements of the algebra of observables at infinity asso
ciated with a representation of the quasilocal algebra by 
Dobrushin53 and Lanford and Ruelle. 54 This description 
accords with the so-called hypothesis of commutative 
supers election rules. 55 

There is a related question of terminology in the 
labeling of supers election sectors. In their systematic 
theory, Doplicher, Haag, and Roberts consider a gen
eral gauge group (the gauge group is the set of auto
morphisms of the field algebra that carries the field 
algebra of each bounded region into itself and leaves 
each observable fixed). They label the supers election 
sectors by the unitary equivalence classes of irreduci
ble representations of the gauge group. Thus, for iso
spin I where the gauge group is isomorphic to SU(2), 
the sectors are labeled by an angular momentum quant
um number or the eigenvalues of 12. The three non
commuting components of isospin Ii> 12, 13 are nontrivial
ly represented in every sector save that of isospin O. 
At first sight this definition of supers election sector 
would seem to conflict with the one quoted at the begin
ning of the present paper because Ii> 12, and 13 commute 
with all observables and therefore apparently define 
supers election rules according to the old definition. On 
the other hand, 11, 12, and 13 clearly do not and cannot 
take on definite values in a superselection sector. The 
discrepancy is resolved if one recognizes that the sub
space of the Hilbert space in which DHR realize the 
gauge group in one of its irreducible representations is 
a highly redundant description of a supers election sec
tor. Two vectors of such a subspace may give the same 
expectation values for all quasilocal observables and 
thus be physically equivalent. With the DHR convention 
for labeling sectors, it is these equivalence classes of 
vector states that constitute the elements of a super
selection sector; in the present case, they form a 
Hilbert space H 1(1+1). If one considers 

EEl H [(1+1) 
1=0,1/2, 1, ••• 

the direct sum of the spaces H 1([+1), one has a for
malism very similar to that arising from the hypothesis 
of commutative superselection rules, with the additional 
complication that the sectors are labeled by the irre-
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ducible representations of a noncommutative (group) 
rather than those of a commutative group. There is no 
room in this Hilbert space for 11,12,13• On the other 
hand, the redundant description in which Ii> 12, 13 are 
nontrivially represented seems much better adapted to 
quantum field theory. 

Although it is possible to maintain the view that 
EEl IH [([+1) is the natural Hilbert space to describe states 
and that, therefore, the hypothesis of commutative 
supers election rules holds in this example, it appears 
more natural to alter the definition within the DRH 
formalism and define it to mean that the gauge group is 
commutative. With this altered definition the hypothesis 
of commutative superselection rules does not hold in 
this example. 

Finally, it should be remarked that the quantum elec
trodynamics of massless charged fermions in two
dimensional space-time is an exactly soluble model 
illustrating the discussion of this section, 56 but showing 
features presumably not possessed by quantum electro
dynamics in higher dimenSions. In any local covariant 
gauge the electromagnetic current exists and defines a 
charge with associated charge sectors in H. However, 
H' lies entirely in the zero charge sector so Hphya does 
not contain any states of charge different from zero, 
and the fermions have disappeared from the theory (this 
has been proposed as a mechanism for hiding quarks57). 

As one would expect from these statements about H phya' 

in the Coulomb gauge there is no charge operator: Q is 
defined as a quadratic form by (2.166) but the corre
sponding symmetry is broken. It is a striking feature of 
the model that in a local covariant gauge it yields a 
unique vacuum and no symmetry breaking but H' is 
entirely contained in the states of zero charge, while in 
another gauge, the Coulomb gauge, the same physical 
situation is described in such a way that the conserva
tion law of charge appears as a broken symmetry in the 
sense that the form Q does not define an operator and 
therefore cannot be the infinitesimal generator of a 
unitary group. 

Although quantum electrodynamics in two-dimensional 
space-time has these peculiar features, it should be 
emphasized that in four-dimensional space-time the 
renormalized perturbation series for the Green's func
tions in Gupta- Bleuler gauges supports the view that 
for massive fermions in four dimensions assumptions 
(a) and (b) [see (2.173)- (2.176)] are valid. See Ref. 17 
and 58 for relevant discussion. 

Strict gauge invariance, gauge invariance, weak gauge 
invariance and gauge independence 

Symanzik has pointed out the usefulness of distinguish
ing three notions of gauge invariance in the indefinite 
metric formalism. 17 We add a fourth which we call 
gauge independence. They are given in order of increas
ing restriction in the following definition. 

Definition 2. 6: An operator B, mapping H into H, is 
gauge independent if 

(2.183) 

for all <1>, 'l1 EH' and any Xi> X2 EH". In other wordS, the 
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matrix elements < <P, BiT) for <P, iT E H' depend only on the 
equivalence classes [<p], [iT] E H pb)r.' 

An operator B, mapping H into H, is weakly gauge 
invariant if it and its adjoint leave H" invariant: 

BH"cH", B+H"cH". (2.184) 

An operator B, mapping H into H, is gauge invariant 
if it and its adjoint leave H' invariant 

BH'cH', BW'cH'. (2. 185) 

An operator B, mapping H into H, is strictly gauge 
invariant if it is gauge invariant and commutes with A" 

[B,A ,,]= o. (2. 186) 

This definition has a straightforward extension to 
operators defined only on appropriate dense subsets 
which will be elaborated in detail only when it is needed. 

We are going to prove the chain of implications 
(2. 183) ~ (2. 184) ~ (2. 185). For that we need an ele
mentary lemma. 

Lemma 2. 2: Let ( . , .) be a sesquilinear form every
where defined and nonnegative on a complex vector 
space H', LetH" be the subset of H' consisting of those 
vectors iT having zero length 

(iT, iT) = 0, 

Then <P EH" if and only if 

(X, <p) = 0 

for all vectors X E H', 

Proof: Schwarz's inequality is valid in H' (by a stan
dard argument valid even when ( . , .) is not strictly 
positive59), so 

I(x, <p) /2 .;(X, X)(<p, <p). 

Thus, (<p, <p) = 0 implies (X, <p) = 0 for all X EH'. Con
versely, take X =<P. • 

If B is weakly gauge invariant, and Xl> X2 EH", then 
BX2, B+Xl EH" and, therefore, by Lemma 2.2 

(<p + Xl> B(iT +X2» = (<p + Xl, BiT) = (B+(<p + Xl), iT) = (<p, BiT) 

for every <P, iTEH'. Thus, if B is weakly gauge invari
ant, it is gauge independent. 

If B is gauge invariant, then BH'cH' and BW'cH', 
so we have, for xEH' and <pEH", 

(X, B<p) = (B+X, <p) = 0, 

The second equality holds because B+XEH' and <pEH". 
The vanishing of (X, B<p) for all X EH' implies B<p EH". 
Thus every gauge invariant operator is weakly gauge 
invariant. 

By definition, every strictly gauge invariant operator 
is gauge invariant. In a large class of local covariant 
gauges, one can prove the stronger statement: If C is a 
local operator, [c, A,,] = 0 implies that C is gauge in
variant. The class of gauges in question is that for 
which there is a local scalar field B such that Av = 0,)3, 
and iT EH' is characterized by Be-liT = O. It includes all 
Gupta-Bleuler and Landau gauges. Because 0vA v= 0, B 
satisfies the wave equations, DB = O. Bya standard 
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argument, one can split the field B into positive and 
negative parts: 

B(x) =B(+l(x) + B(-l(x), (2.187) 

where 

suppBC+l(k)c V+ and sUppBC-l(k)c V_. 

Then [C,Av]=O implies [C,BC+l]=O=[C,B C- l ] and, con
sequently, if iTEH', 

BC-lCiT = CBC-liT = O. 

Therefore, CiT E H', and C is gauge invariant. 

A rough idea of the distinction between strict gauge 
invariance and gauge invariance may be expressed as 
follows: Strictly gauge invariant operators are functions 
of A",j", and the other fields that do not change when 
A" -A" + o"X, 1Jij(x) - exp[iqjX (x)]1Jij (x) where X is any 
smooth real-valued function, while gauge invariant 
operators may change but only by the addition of an 
operator mapping H' into H". Examples of operators 
which are strictly gauge invariant are F"v andj". An 
example of an operator which is gauge invariant but not 
strictly gauge invariant is the energy momentum tensor 
@"v. An example of an operator which is gauge inde
pendent but not weakly gauge invariant is, in a free 
Gupta-Bleuler gauge, o"A" (f)A(g). It satisfies (2.183), 
but does not map H" into itself. An example of a weakly 
gauge invariant operator which is not gauge invariant is, 
in a free Gupta-Bleuler gauge, 

(BiT)~~~""n =n"l'" n"nbV1 (k1)··' bVn(kn)iT~~!"vn(kl'" k n) 

(2. 188) 

where k"b"(k) = 0, bE S(1R4
) and k"n" * O. For further 

information and references see Ref. 17. For the pres
ent discussion of the charge supers election rule, it is 
mainly gauge independence that is significant, 

The following elementary lemma will be used in the 
proof of the charge supers election rule. 

Lemma 2. 3: If B is gauge independent, then 

( <P, BiT) = 0 = ( <P , B~) 

for every <pEH' and iTEH". 

Proof: It suffices to remark that the matrix elements 
depend on iT only through [iT], which contains the zero 
vector. 

Associated with a gauge invariant operator B in H, 
there is a uniquely determined operator B in H'/H" as 
indicated in· the diagram 

H' --..!L.. H' 
J ~ J (2. 189) 

H'/H"-L.H'/H" 

where the vertical arrows indicate the mapping <P - [ <P ]. 
The crucial point is that if X EH",_ B(<p + X) =B<p +BX, 
where BX E H", so we can define B[ <P ] = [B<p]. i1 is clear
ly linear and fi+ = (fit. Furthermore, BC = i1E, (B + C) 
=fi + C and /I.E = >.B so B - jj is a homomorphism of the 
gauge invariant operators of H, which form an algebra, 
into the algebra of operators ofHpb)r.=H'/H". 

If B is weakly gauge invariant or only gauge indepen-
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dent, the construction of B requires alteration. Given 
B defined on H, one can consider the sesquilinear form 
(<l>, B>l!) restricted to <l>, >l! EH'. If B is gauge indepen
dent, this form actually depends only on [<l>] and [>l!] and 
therefore defines a sesquilinear form on H' / H", which 
we denote by B([<l>], [>l!]). We would like to conclude that 
there exists an operator i3 inH'/H" such that 

B([<l>], [>l!]) = ([<l»:B['lI])H'/H'" 

For this to hold, it is sufficient that B([ <l>], [>l!]) be 
separately continuous in [<l>] and [>l!]. The situation is 
quite different depending on the completeness of H' /H". 
If H'/H" is complete its topology can be defined in two 
different but equivalent ways. On the one hand, it has a 
topology induced by the seminorm ';(<l>, <l». On the other 
hand, H'/H" as the quotient of two closed subspaces of 
H has a topology induced by the norm ,; (<l>, <l» in H. 
Since (<l>, B>l!) = (<l>, 1]B'lI) is evidently separately continu
ous in the latter description, B ([ <l> ], [>l!]) is separately 
continuous in the former. If H'/H" is not complete little 
can be said without further information on ( . , .) and 
the spaces. Apparently, there is no general argument 
that guarantees the existence of B in this case. Of 
course, if i3 does exist, it can be extended by continuity 
to all of H'/H". 

We continue the analysis assuming H'/H" is complete. 
Clearly the mapping B-i3 is linear and (Br=B+. How
ever, the preservation of algebraic properties is not 
assured. To begin with, if Band C are gauge indepen
dent, in general BC will not be, so the gauge indepen
dent operators do not form an algebra. If Band Care 
weakly gauge invariant, their product is also, since it 
too leaves H" invariant. Thus, the weakly gauge in
variant operators form an algebra. Furthermore, the 
operation B - i3 is defined on the algebra of weakly 
gauge invariant operators. Unfortunately, we cannot in 
general say that Be = BC because C need not carry H' 
into H'. On the other hand, if B is weakly gauge in
variant and C is gauge invariant, we have Bc = BC and ,.J __ 

CB = CB because if <l>, >l! EH' 

(<l>,BC>l!) =(<l>,B(C>l!» =([<l>],i3[C>l!l>HiH" 

since C>l!EH'. The gauge invariance of C implies [C>l!] 
=C[>l!], so 

(<l>,BC>l!) =([<l>],BC[>l!])HiH" 
~ 

=([ <l>], BC[>l!]) H'/H" 

,..., --
The argument for CB = CB follows by passing to 
adjoints. 

In summary, even under the assumption that H'/H" 
is complete, it appears that although the mapping A - A 
is defined for every gauge independent A we cannot 
guarantee it to be an algebraic homomorphism unless A 
is gauge invariant, even though the set of weakly gauge 
invariant operators do form an algebra. 

We now turn to a closer examination of the physical 
meaning of gauge independence. Our notation H Pill's 

=H'/H" indicates the received wisdom that physically 
realizable states should be described by vectors in 
H Pill's and therefore observables should be described by 
self-adjoint operators mapping H Pill's into itself. As we 
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have seen, a gauge independent self-adjoint operator A 
in H' gives rise to a unique self-adjoint operator in A 
in H Pill's. We ask, "Does it ever make sense to regard a 
nongauge independent self-adjoint operator in H as an 
observable?" We are going to answer this question in 
the negative under a plausible additional assumption on 
H'. 

There are four essential constituents of a description 
of observations in quantum theory: observables, Physi
cally realizable states, expectation values Of observa
bles in states, and transition probabilities between 
states. If A is an observable and >l! is a physically 
realizable state, we write E:(:!,!~ a real number, for 
the expectation value of ~ in!. If >l!1 and >l!2 are two 
physically realizable states, there is an associated 
transition probability T(.!1, >l!2), a real positive number 
~ 1. The internal consistency of the description re
quires that 

(a) Two observables Al and A2 are equal if and only if 

E(Al,!) =E(A2,!) 

for every physically realizable state !. 

(b) Two physically realizable states >l!1 and >l!2 are 
equal if and only if 

E(:!, >l!1) = E~, >l!2) 

for every observable ~. 

(c) Two physically realizable states >l!1 and >l!2 are 
equal if and only if 

T('lIt,~) = T(>l!2'~) 
for every physically realizable state ~. 

This general description is somewhat redundant 
since the information contained in the expectation values 
of all observables can also be expressed in terms of 
transition probabilities and conversely. [For example, 
in the usual Hilbert space formalism where! stands 
for a unit ray, i. e., a unit vector up to a phase factor, 
we have T(>l!t, >l!2) = E(P~l' >l!2) = 1 (>l!1, 'lI2) 12 where P~l is 
the projection operator onto >l!1' ] 

Now suppose we are given an indefinite metric for
malism with its triple of subspacesH, H', andH" and 
its Hermitian sesquilinear form ( . , .) positive on H'. 
We assume: 

(d) There is a subset 'E CH' of vectors >l! normalized to 
1, (>l!, 'lI) = 1, which determine corresponding states!. 
Similarly, there is a family 0 of operators acting in H 
and Hermitian relative to ( . , . ); the operators A in 0 
determine observables A. The mappings >l! - >l! and 
A - ~ are such that all physically realizable States ,! 
arise from vectors >l! E 'E and all observables A arise 
from operators A in o. The expectation value :md trans
ition probability satisfy 

E(:!,,!) = (>l!,A>l!) , 

T(>l!t, >l!2) = I (>l!1, >l!012. 

(2.190) 

(2. 191) 

The transition probabilities defined by (2.191) have 
the property that they depend only on equivalence 
classes inH'/H": 
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T(>ltt. >lt2) = T(>ltl +Xl, >lt2 +X2) 

for all XbX2EH", since by Lemma 2,2 (Xb 'l12)=(1J't.X2) 
= O. If we insist on the principle that physical state
ments expressible in terms of transition probabilities 
be also expressible in terms of expectation values of 
observables we have to require: 

(e) If >It is a physically realizable state arising from a 
vector i; then >It + X for any X EH" is also a vector 
giving rise to the same physically realizable state and 

E~,!) = E~, >It + X) 

for all observables ::!. 

(2.192) 

In this general setting the answer to the question of 
the gauge properties of observables in straightforward. 

Proposition 2.8: In a quantum mechanical theory 
using an indefinite metric formalism satisfying (a), (b), 
(c), (d), (e), every operator A inH that gives rise to an 
observable::! is gauge independent. 

Proof: If (2.192) holds for every physically realizable 
! and every X E H", then 

(>It,A>It) =(i' + AX, A (>It + AX) = (>It, A >It) 

+ IAI2(X,Ax) +2ReA('l1,Ax) 

for all complex A, so 

('l1, AX> = O. (2. 193) 

If the >It are dense inH', this condition implies (2.183). 
On the other hand, if superselection rules operate in the 
theory there will be a set of orthogonal subspaces of HI 
spanning the whole space and the 'l1 will be dense in each 
of these so one can again recover (2.193) for all 'l1 EH' 
and hence again the gauge independence of A. 

3. STATEMENT AND PROOF OF THE CHARGE 
SUPERSELECTION RULE 

The crux of the argument is contained in the following 
proposition. 

Proposition 3.1: Let 1r(O) be the local algebra of 
bounded operators associated with the bounded region 0 
of space-time (the generalized Haag-Kastler field 
algebra) in the Hilbert space H. Suppose that in Hone 
has the basic structures of an indefinite metric for
malism for the electromagnetic field, so that one can 
give meaning to the statement that an element of 1r(O) 
carries charge q. Then each element A E 15 (0) that is 
gauge independent and carries charge q, either carries 
zero charge or has zero matrix elements (4),A'l1) for 
all vectors 4>, >ltEH'. 

Proof: Suppose A E 15(0) and 

lim (4), [Q R, A ]'l1) = q( 4>, A'l1) 
R-~ 

for every 4>, 'l1 E D, the dense domain of Definition 2. 5. 
For sufficiently large Iyl, 2;F;°(Y°,y) commutes with 
A. Thus for sufficiently large R, the right-hand side of 

(4), [Q R, A ]'l1) = J f d3y dyOfa(Y O)f R( I y 1)( 4>, (j0(Y0, y), A ]'l1) 

is 
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=- J f d 3dyOfd(Y°)fR(lyl)(4>, [A°(Y°,y),A]'l1) 

= - (4), [A °UafR),A ]'l1) 

= - (A °UdfR) 4> , A'l1) + (4), AA °UdfR)'l1). 

Since AOUdfR)ft CH" and A is gauge independent, both 
of these last terms vanish by Lemma 2.3. Thus 

q(4),A'l1) = 0 

for all 4>, 'l1 E D, and we conclude that either q = 0 or all 
matrix elements of A between states of HI vanish. 

An operator A such that all its matrix elements be
tween vectors of HI vanish clearly describes a trivial 
observable since the - mapping yields A = 0 in H pby •• 

Moreover, two local operators A and B differing by a 
physically trivial operator [(4), (A - B)'l1) = 0 for all 4>, 'l1 
EHI] describe the same observable since A =B. We 
will say, in this case, that A is equal to B modulo a 
physically trivial operator. 

With this preparation we can now establish the main 
result of the paper 0 

Theorem 3.1 (The Charge Supers election Rule): In 
quantum electrodynamics in a local covariant gauge 
satisfying the hypothesis of Proposition 2.8, every 
quasilocal observable modulo a physically trivial opera
tor commutes with exp(iO!Q) where Q is the electric 
charge and O! is any real number. 

Proof: We reduce the theorem to the preceding 
Proposition 3.1, USing the fact the quasilocal observa
bles must described by gauge independent operators by 
Proposition 2.8. We argue as we did just after Lemma 
2.1, that if every gauge independent element of each of 
the generalized Haag-Kastler algebras 15 (0) modulo a 
physically trivial operator commutes with exp(iuQ), 
then so do their norm limits and therefore so does 
every gauge independent quasilocal observable. We 
notice that if A is a gauge independent element of 15 (0) 
so are its constituents that carry definite charge, de
scribed in Lemma 2. 1. Moreover, all its constituents 
carrying nonzero charge have zero matrix elements be
tween vectors of H' according to Proposition 3.1 and 
therefore it differs from its zero constituent Ao by a 
physically trivial operator. Clearly, A o commutes with 
exp(iO!Q), and the theorem is proved. 

It is clear from the above discussion that locality and 
dynamics (Maxwell's equations) play an essential role in 
the proof of the charge supers election rule. It is not 
difficult to see that they are crucial for the argument. 
For example, the charge carrying fields introduced by 
Mandelstam,60 

4> (x) = CP(x) exp[- ie r:d~" A"W], 

are (at least formally) strictly gauge invariant, as 
Mandelstam has shown. <I>(x) does not provide a counter
example to the above theorem because it is not local. 
This shows that the assumption of locality cannot be 
dispensed with in this proof. The role played by Max
well's equations in the derivation makes it clear that the 
charge supers election rule is not a kinematical prop
erty, following from purely group theoretical considera
tions. It arises because the charge is coupled to a 
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massless field F"" through the divergence o"F"". More 
explicitly, it is the fact that 

r= o"F"" - A" 
where A" is not observable that allows us to conclude 
(<1>, [QR,Al'lt) = 0 in the above argument. Maxwell's equa
tions are crucial in the deduction. 

It is useful at this point to go back to the question why 
the theorem has not been proved directly in the Coulomb 
gauge or inH'/H". One might think that a much Simpler 
proof could be obtained by uSing only the triplet (R;: [set 
of gauge invariant operators], F"",j,,), since this would 
allow us to work directly in H'/H" rather than in H. The 
main objection is that one should then exhibit a con
vincing proof that observables must be not only gauge 
independent but also gauge invariant. Even if the result 
seems plausible, providing a proof does not seem to be 
trivial and this justifies our giving the argument in H, 
where gauge independence of observables can be estab
lished, rather than inH'/H". 

There is another deeper reason why the argument 
does not work inH'/H". The crux of the proof of charge 
supers election rule is that a global observable like the 
electric charge Q can be obtained as a limit of local 
operator QR=fj°(X)fR(x)dx. It is not obvious on general 
grounds that this has to be true in one gauge and not in 
another. From perturbation theory one learns that this 
is true in the Gupta-Bleuler gauge since, at each order 
of perturbation theory, for any local field A 

[Q,A] = lim [QR,A]. 
R-'" 

(3.1) 

Since local fields are irreducible one is allowed to con
clude that Q=limR_ooQR, in the sense that gauge trans
formations of the first kind admit a local generator in 
the Gupta-Bleuler gauge. 

In order to have an irreducible set of operators in the 
Coulomb gauge, or in H'/H" , one must include charged 
fields and for them 

[ Q, ~] * lim [ Q R, ~] 
R 

as one learns from perturbation theory (1. 23). This is 
not surprising because the property that gauge trans
formations of the first kind admit a local generator is 
usually dependent on the gauge. An example is provided 
by two-dimensional QED, where a local generator exists 
in the indefinite metric gauge but not in the Coulomb 
gauge. 

The validity of (3.1) in H does not allow one to con
s.lude that the same equation holds for the operators, Q, 
QR, and A in H'/H " , Le., that 

[Q,A] = lim [QR,A]. R-oo 
(3.2) 

Equation (3.2) follows from (3.1) if A is gauge invariant. 
But the set of gauge invariant operators does not form 
an irreducible set of operators inH'/H" and one cannot 
~onclude [Q, . ] = lim R [<> R, .]. In fact, for charged fields 
l/! this equation does not hold in perturbation theory. 
More generally, if A is a local operator in 

[Q,A]=[AR,A], R suffiCiently large, 
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whereas, in general, 

[Q,A1 * LA R,A] = 0, 

since A R = O. Thus, relations valid in H do not carry 
over to H'/H" in general. 

4. SPECULATIONS ON THE BARYON AND LEPTON 
SUPERSELECTION RULES 

To complete the paper, we want to discuss the possi
bility of an analogous treatment of other supers election 
rules, in particular, the baryon and lepton superselec
tion rules. It is natural to look for such an explanation 
in the possibility that there are gauge fields associated 
with the strong and weak interactions, a perennial idea 
that is currently under extensive study. 

As a preliminary we ask the question, "What is the 
difference between a conservation law arising from a 
symmetry of the theory under a (finite) Lie group and 
one ariSing from symmetry under an infinite Lie group 
or gauge group?" For example, the invariance of a 
Lagrangian under a U(l) group (gauge invariance of the 
first kind) implies the existence of a current J" which 
is conserved, a jJ.J" = 0, and whose charge, f d3x J O, is 
the infinitesimal generator of the representation of the 
U(l) group. If the Lagrangian is adjusted so as to be 
invariant under a local group which extends the U(l) 
group, does the theory acquire new conserved currents 
or new restrictions on J jJ.? This question can be put 
another way: If we are given a strictly conserved charge 
which is the infinitesimal generator of a U(l) group, is 
there any obstruction to obtaining an extension to an 
associated local gauge group? 

The standard answers to these questions appear to be: 
In going from a U(l) gauge invariance to a correspond
ing local gauge invariance one acquires no new con
servation laws. (See, for example, Ref. 61, especially 
p. 1557, and Ref. 62, especially p. 1083, or, for a 
general and pedagogical account, Ref. 63.) On the other 
hand, local gauge invariance does imply an additional 
restriction on the structure of the current: It must be 
the divergence of an antisymmetric tensor. The result
ing special structure of the current is responsible for 
a variety of soft pion theorems, etc. 63 What we have 
to add to this is the remark that conserved currents 
ariSing from local gauge invariance give rise to super
selection rules if the gauge invariance is not broken. 

Just as for quantum electrodynamics, the arguments 
come in two stages. One has first to convince oneself 
that an indefinite metric formalism is necessary in 
order that one should have a local and physically in
teresting theory. Then within the indefinite metric 
formalism one proves the existence of supers election 
rules. 

To be concrete, we consider the Yang-Mills theory64 

in which the isospin group is extended to a local gauge 
group. In one formulation of this theory, the basic equa
tions are 

(4.1) 

the analog of the first of the Maxwell equations (1. 13). 
Of course, in the full dress quantum field theory the 
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term involving b" Xf"v in the current Jv has to be defined 
by some limiting procedure, just as the constituent 
contributions to Jv do, when they are expressed as non
linear functions of the other field variables. The triplet 
of conserved currents Jv is related to a triplet of 
charges 

(4.2) 

which are generators of local gauge transformations. 

The arguments used in the proof of Theorem 1. 3 
now imply. 

Proposition 4.1: 

(a) In any local theory in which Eq. (4.1) holds, the 
charges Qk generate the identity transformation of the 
local fields, and therefore cannot be associated with 
any quantity of physical interest. 

(b) In any local theory in which there are local fields 
1/1 of nonvanishing Qi charge 

(4.3) 

the field equation (4.1) can hold only in a subspace H' of 
the Hilbert space H of states: 

(4.4) 

for iI>, 'If EH'o Here (. ,0) must be indefinite on H. On H, 
the difference 

o"f"v - Jv = IIv (4.5) 

does not vanish identically, but satisfies 

1I.I-I'cH". (4.6) 

The proof of (a) is an immediate consequence of local
ity and Gauss theorem, the argument being that of the 
proof of Proposition 3, 1 with the additional simplifica
tion that the analog of 11° vanishes. The proof of (b) 
runs precisely parallel to that in Ref. 13 for quantum 
electrodynamics. [Recall that the essential constituents 
of that proof were that the Maxwell equation holds in the 
sense that matrix elements (ii>, (o"F"V - j")'If) = 0 for a 
dense set of vectors iI>, 'If in H', that ( . , .) be nonnega
tive onH' and nondegenerate onH, and that the auto
morphism induced by the charge QR=fd4xjo(xO,x)fR 
x (I x I )fa(x°) be nontrivial. Then it follows that IIvil> can
not be zero for all iI> in the dense set, but that it must 
be vector of zero length and, consequently. (".) can
not be nonnegative and nondegenerate on all of H. ] 

When Yang and Mills quantized their theory, in fact, 
they adopted an alternative formulation of their equa
tions in which IIv is not zero, being - ovo"b", and most 
later authors have followed them in this. (See, for ex
ample, Refs. 61 and 65. ) What we want to inSist on is 
that if these procedures are carried out conSistently 
they always yield a formalism with indefinite metric. 

Once the formalism for Yang-Mills theory with 
gauges specified by the analog of Definition 2. 1 is ac
cepted, one can define strict gauge invariance, gauge 
invariance, weak gauge invariance, and gauge indepen
dence in precise analogy with Definition 2. 6 and prove 
an analog of Theorem 3. 1. 

Proposition 402: In Yang-Mills gauge theories, the 
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charges Qi, if they are the infinitesimal generators of 
symmetries, are not only conserved, they also generate 
superselection rules. If a charge Qi corresponds to a 
spontaneously broken symmetry it does not define a 
conserved quantity and thus does not define a super
selection rule. 

There are several remarks to be made on the signi
ficance of this result. First, a notational matter: The
ories for which conserved noncommuting Qi exist do 
not provide examples of noncommutative supers election 
rules. As explained in Sec. 2 after Lemma 2.1, we 
follow Ref. 5; the supers election sectors will be labeled 
by the unitary equivalence classes of the representations 
of the group generated by the conserved Qi. Second, the 
theorem offers no clue whether a given Qi will define a 
conserved quantity or not. The question whether a sym
metry is spontaneously broken or not is a deep dynami
cal problem about which we have nothing to say. How
ever, this theorem does provide a precise answer to 
the questions posed above. Conserved currents of gauge 
theories of the Yang-Mills type do have an additional 
property: When their charges are conserved they define 
supers election rules. Third, there is reason to believe 
that these arguments sketched for Yang-Mills theories 
can be extended to general gauge theories. It has been 
proved by utiyama66 that a Lagrangian invariant under 
local gauge transformations gives rise to equations of 
the form 

(4.7) 

The conserved currents JOt give rise to charges for 
which Proposition 4. 1 can again be proved. Fourth, 
among the gauge theories that come under utiyama's 
results is the theory of the graVitational field. In it 
there is a family of conserved currents, the energy 
momentum tensor ® "v, and the angular momentum 
density m«;A'" As was pointed out to us in corre
spondence with Deser, the argument of this paper ap
parently generalizes to yield a supers election rule for 
energy, momentum, and angular momentum. (See Ref. 
62 for a discussion of Gauss law for these cases. ) How
ever, the very foundation of local quantum theory for 
theories of quantized gravitation needs further study67 

and so we defer discussion of this problem. 

Now we turn to the baryon and lepton superselection 
rules. Here there are two experimental facts to be ex
plained: the supers election rule itself and the fact that 
there is no long range force associated with the 
"charges", baryon number, and lepton numbers. [Ex
periment can, of course, provide only approximate sup
port for such absolute statements68 and it is not incon
sistent to regard baryon conservation (and, of course, 
lepton conservation) as approximate. 69 We consider the 
conservation laws here as absolute. ] 

The absence of long-range forces associated with the 
baryon number is an old problem, 70 to which a number 
of interesting solutions have been proposed. (See, for 
example, Ref. 71:) Here we will consider a recent 
proposal68 which exploits the Higgs mechanism of local 
gauge theories: The massless gauge boson whose ex
change would give rise to the long-range force is con
verted to massive particles by the interaction to the 
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accompaniment of spontaneous breaking of the local 
gauge invariance. The natural question is how one can 
exploit this mechanism to solve the second problem 
without at the same time losing the conservation law of 
baryon number because of the breaking of gauge sym
metry. Pais proposed a solution to this problem in 
which there is an auxiliary non-Hermitian scalar field 
¢, a conserved baryon current JI', and a conserved ¢ 
current J~. The baryon number Q associated with JI' is 
assumed conserved, while that Q~ associated with J~ is 
not. What we are going to show is that a slight general
ization of the above analysis makes it applicable to Pais' 
model and leads to the conclusion that the model also 
has a baryon number supers election rule. 

Variation of the classical Largangian which is Pais' 
starting point, with respect to the vector boson field, 
yields the equation 

(4.8) 

which is supposed to be an operator identity connecting 
local fields in the quantized version of the theory. Just 
as before we want to argue that an indefinite metric 
formalism in which the Eq. (4. 8) is replaced by 

(4.9) 

where II "H' cHit is unavoidable if J" is to be a con
served current generating a conservation law for Q 
(here the baryon number). The extra complication is 
that J;, while conserved al'J~ = 0, is supposed not to 
generate a conserved quantity Q~; just that fact can be 
exploited to yield the proof. For consider the action of 

QR on a local field, A E l'J(Q) 

(iP, [QR, A ]-It) = - (iP, [Q~R' A ]-It) + (iP, [aIF10(f Ri,), A]-It) 

(4.10) 

where iP, -It run over a dense domain of localized states 
in H. For R sufficiently large the last term vanishes 
and we see that Q ~ has the same action on local fields 
as - Q. Since by assumption the latter action is unitari
ly implementable, so must be the former, a contradic
tion. Notice that for this argument to be valid Q~ need 
only exist as a densely defined sesquilinear form; that 
always holds under our assumptions. Thus, (4.8) must 
be interpreted in a weaker sense. If we require it to 
hold in the sense of 

(4.11) 

on some dense subset of H' a closed subspace the Hil
bert space H, we conclude as in quantum electro
dynamics that H' cannot be H and must contain vectors 
of zero length in the form ( . , . ). Those vectors form a 
subspace Hit. Furthermore, II "H' cHit just as in 
PropOSitions 1. 3 and 40 1. 

Having accepted the equation of motion (4.9), we have 
an analog of (4.10): 

(iP, [QR,A]-It) = - (iP, [Q~R+ II °(fRia)' A]-It) 

+ (iP, [a iFI 0(f Ria), A ]-It). (4.12) 

Again the last term vanishes for sufficiently large R. 
Now we restrict our attention to iP, -It states in H', and 
A a local gauge independent operator. Then by the argu-
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ment of the proof of PropOSition 3. 1 the terms contain
ing II ° drop out and we are again left with 

(4. 13) 

this time, however, with A local and gauge independent, 
and iP, -It is a dense set of states in H'. Now the assump
tion that Q is a conserved observable quantity implies 
that the left-hand side of (4.13) is actually dependent on 
iP and -It only through [iP] and [-It] (to see this recall that 
the algebra of observables is generated by elements of 
definite charge) and defines the infinitesimal form of an 
automorphism of the observables A in H ph:,.. Thus the 
same is true of the right-hand side. This is only com
patible with the assumption that Q q, defines a broken 
symmetry if the automorphism is trivial. Then baryon 
number carrying local fields carry baryon number zero 
and the baryon number supers election rule can be 
established as in the proof of Theorem 3.1. Thus, if 
Pais' model has solutions realiZing the Higgs mechanism 
the baryon number Q defines a supers election rule. 

There is a sense in which Pais' model resolves the 
problem of the absence of long-range forces associated 
with baryon charge by definition. In it the baryon cur
rent JI' itself is not the source of a gauge field; rather 
it is JI' +Jq,I" The Lagrangian possesses gauge in
variance of the first kind and not of the second kind with 
respect to phase changes of the baryon field. Neverthe
less, as the above argument shows, the broken gauge 
invariance of the second kind of JI' + Jq, I' implies a 
supers election rule for the baryon charge. 

The above discussion may perhaps be regarded more 
as an object lesson than as a general theorem. It makes 
plausible that there is a generic explanation of the 
baryon (and Similarly the lepton) supers election rule in a 
class of gauge theories even if partial breaking of the 
gauge invariance occurs. 
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APPENDIX A: SOLUTION OF THE EQUATION 
d(AI A) = A -I d(AI ) + dIAl 

Wigner already gave a proof in 1939 (Ref. 37) that all 
solutions of the indicated functional equation are of the 
form 

d(A) = (1- A -l)n (A1) 

where n is some fixed vector. We found the following 
alternate proof which may make up in Simplicity for 
what it lacks in priority. 

Let Go be the subgroup of the restricted Lorentz 
group L: consisting of all A E L: such that 

~=a ~2) 
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where a is some real timelike vector. We average the 
defining equation 

d(A 1A) =A -ld(A1) +d(A) (A3) 

over Ga in the variable Al to obtain 

fO
a 

d/J. (A1)d(Al A) = A-I fOa d/J.(A1)d(A1) + d(A) (A4) 

where d/J.(A 1) is the invariant measure on Ga normalized 
so that f 0 dj.L (AI) = 1. Since dj.L is invariant, dj.L (AI) 

a 
=dj.L(A1A); and, therefore, denoting f 0 dj.L(A1)d(A1) by n, 
we have (A1) at least for all A EGa and'with an n which 
can depend on a. 

How uniquely is n determined? Clearly, adding any 
multiple of a to n does not affect (A1). Furthermore, 
that is all the arbitrariness in n, since 

(1- A -l)n = (1- A -l)n' 

for all A E Ga implies n - n' is a multiple of a. 

Next let al and a2 be two noncollinear timelike vec
tors. The subgroup Gal n Ga2 consists of Lorentz trans
formations leaving a1 and a2 fixed and acting on the two
dimensional spacelike plane of vectors orthogonal to al 
and a2. If nl and ~ are the n vectors determined as 
above for Gal and Ga2 

(1- A -l)nl = (1- A -1)n2 

for all A E Gal n Ga2 . That implies that nl - n2 lies in the 
plane spanned by al and a2, 

nl - n2 = (\!al + {3a2' 

The requirement that 0' = 0= (3 fixes the arbitrariness in 
nl and n2 uniquely. Thus, there exists a uniquely deter
mined n so that (A1) holds for all A E Gal and all A E Ga2. 

It remains to show that with this same n (A1) holds 
for all A E L:. What follows immediately from (A3) is 

d(A 1A) =A -1(1_ A -l)n + (1- A -l)n 

= [1- (A1A)-1]n 

for all Al and A with Al E Gal and A E Ga2 . By repeating 
this argument by induction, we obtain that (A1) holds 
for all A in the group generated by Ga and Ga . It re
mains to argue that the only subgroup 10f L: t~at con
tains both Gal and Ga2 is L: itself. This statement is an 
immediate consequence of the fact pointed out to us by 
Bargmann that if A is any element of L: not in SO(3), 
the subgroup of L: generated by A and SO(3) together is 
all of L:. 72 

However, let us, for completeness, offer a proof, 
also suggested by Bargmann. It is convenient to work 
with the covering groups and therefore to show that if 
A is any element of SL(2, (1:) not in SU(2) and G is the 
smallest subgroup of SL(2, <r) containing A and SU(2) 
then G=SL(2,(I:), Clearly, if this result can be estab
lished the desired statement for SO(3) and L: follows. 

Now it suffices to show that G contains all positive 
diagonal matrices of determinant 1: 

D~=(6 1)~1)' 1-S1)<00, 

because by the polar decomposition every BE SL(2, <r) 
can be written B = UH where U E SU(2) and H is positive, 
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Hermitian, and of determinant 1, and H in turn can be 
written H = U1D~Ui.l for some U1 E SU(2) and some 1) with 
1 -s 1) < 00. Thus the general element B of SL(2, (1:) is a 
product of the element UU1 E SU(2), D~, and Ui1 E SU(2). 
Notice further that the pair {1), 1)-1} is uniquely deter
mined by B and, in fact, can be computed from the 
formula 

tr(B*B) =tr([U1D:U1U*][UU1D~ur]) 

= tr(D~) = 1)2 + 1)-2. 

Thus, all that has to be shown is that G contains ele
ments for which tr(B*B) takes every value in the in
terval2 -str(B*B) <00. 

By the same reasoning we may as well assume the 
element A is diagonal and Hermitian, say Dd • Consider, 
then, the element 

A ={cose- Sine} 
8 sinecose 

in SU(2), and its transform V8, n by D~ 

_ n -n _{cose - d
2n sine} 

VS,n-DdAsDd - d-2n sinB cosB . 

For it 
2 

tr(V *V ) = L; 1 V 12 = 2 cos2B+ (d2n + d-2n) sin2B S,n 8,n i,k.l 8,nJk 

which takes the value 2 for B = 0, and (d2n + dd2n) for 
e =- 21T. Since it is continuous in e it takes every value in 
between. Since n can be chosen as large as one likes, 
the trace takes every value in the interval 2 
-s tr(V8,:V8,n) < 00 for suitably chosen Band n and the 
theorem is proved, 
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With the pair Hamiltonian model as the starting point. perturbation theory calculations are 
performed for the radial distribution function and the structure factor through second order in the 
two-body interaction potential for a many-boson system below the Bose-Einstein transition 
temperature. For the special case of a dilute hard-sphere Bose gas at T =00 K, the structure factor 
is calculated in the low-momentum limit keeping terms through second order in the hard-sphere gas 
parameter (n a 3)1/2. where n is the gas density and a is the hard-sphere diameter. The resulting 
expression for the structure factor is shown to satisfy the Feynman-Bijl relation explicitly. 

1. INTRODUCTION 

In a previous paper1 perturbation theory calculations 
were performed for the average energy and momentum 
distribution of a degenerate Bose system (a Bose sys
tem below the Bose-Einstein transition temperature), 
through second order in the two-body interaction poten
tial using the pair Hamiltonian model as a starting 
point. In the present work we perform similar calcu
lations for correlation functions; in particular, the 
radial distribution function and the structure factor for 
a degenerate Bose system are both calculated. We spe
cialize these results to the case of a dilute hard sphere 
Bose gas at T= OOK, using the procedure outlined in 
Appendix F of 1. The resulting expression for the 
structure factor disagrees in part with an earlier re
sult of T. T. Wu. 2 In the low-momentum limit we obtain 
an explicit expression for the structure factor, valid 
through second order in the hard sphere gas parameter 
(na3)1 /2, where n is the density and a is the hard sphere 
diameter. 

The Feynman-Bijl relation3 which relates Sin (q), the 
inelastic part of the structure factor S(q), to the low
lying excitations of a degenerate Bose system is given 
by 

Pi2 q2 
Sin (q) = 2m • Wexc(q) (q - 0). (1. 1) 

The result for the structure factor obtained in this paper 
is shown to satisfy (1. 1) for the dilute hard sphere Bose 
gas (DHSBG) provided we identify w.."c(q) with the quasi
particle energy e+(q) obtained in 1 [see Eq. (I. F25)]. We 
shall use units Pi = 2m = 1 throughout this paper. 

2. RADIAL DISTRIBUTION FUNCTION AND 
STRUCTURE FACTOR 

We begin by defining the one- and two-particle cor
relation functions P1 (r1) and P 2(rt. r2), where r1 and r2 
label the coordinates of particles 1 and 2. USing Fock 
space notation, these are 

P 1 (r1) = n-1(lV(r1)zJ;(r1) ' 

P 2(rt. r2) = n-2W(r1W(r2) zJ;(r2) zJ;(r1) , 

where 

zJ;(r) = n-1 /2:0 ake i kor, 
k 

(2.1) 

(2.2) 

(2.3) 
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n being the volume. The operators all in (2.3) are the 
annihilation operators of free bosons, and these to
gether with the Hermitian conjugate operators a: satisfy 
the Bose commutation relations. P 1 (r1) gives the nor
malized probability for finding one particle at the posi
tion r1 in the N-particle system. Similarly, P 2(rt. r2) 
gives the probability for finding one particle at r1 and 
another at r2 in the N-particle system. For an isotropic 
system in the infinite-volume limit4 it can be shown 
that 

P 1(r1) =1, 

P2(rt. r2) = P 2( Ir1 - r21) = P2(r), 

r= Irt - r21, 

(2.4) 

(2.5) 

(2.6) 

where P2(r), known as the radial distribution function, 
now represents the probability that two particles in the 
N-boson system are separated by a distance r = 1 r1 - r21. 
In the infinite-volume limit, using (2.3) and momentum 
conservation, we can rewrite Eq. (2.2) for P2 (r) at 
T= OOK as 

x ('11 1 a~1 ak2ak3ak4 1 '11) 
('111'11) 

(2.7) 

where I'll > is the ground state vector of the many-boson 
system. The Fourier transform of P2(r), known as the 
structure factor S(q), is given by 

S(q)=l+nJ P2(r)e
l
.'

r d3r. (2.8) 

Interest in this quantity occurs especially, because ex
periments using neutron and x-ray diffraction give 
direct information about S(q), and hence about P2(r). 5 

We shall be interested here only in the inelastic part of 
S(q), i. e. , 

Sin(q) = S(q) - n(211ll5(3)(q) 

(2.9) 

In this section, we shall give formal calculations of 
P2(r) and Sin(q), starting from (2.7) and (2.9), respec
tively, to second order in the two-body interaction po
tential for a many-boson system below the Bose-Ein
stein transition temperature T).. The procedure for the 
perturbation theory calculations using the pair Hamil-

Copyright © 1974 American Institute of Physics 2225 



                                                                                                                                    

2226 I. RamaRao and F. Mohling: Perturbation theory. II 

tonian model as the starting point has already been 
outlined in Sec. 2 of I, and we shall not repeat these de
tails here. 

As in I, we assume that a degenerate Bose system at 
rest is characterized by macroscopic occupation of the 
zero-momentum state. According to Sec. 2 of 1 we must 
consider separately the two possibilities for k,; namely, 
k i = 0 and k, = PI'" 0 and make the Bogoliubov approxima
tion [see (1.2.2) and following] a o -au -N1!2. Here No is 
the number of particles in the zero-momentum state. 
We then obtain the following expression for P2(r) from 
(2.7): 

P2 (r) = 1 + P 2A (r) + F11 (r)F11 (- r) + F 20(r) F02 (r) 

(2.10) 

where 

(2.11) 

denotes the fraction of particles in the zero-momentum 
state. The functions introduced in (2.10) are 

P2A(r) = ~(nOr1E e'''''B(p), 

with 
I> 

B(P) = ('111 (2a;al> + a;a:1> +al>a_p) 1'11)('111 '11)-1 

Fu(r) = (nO)"IL:;(n(p» ei ,.,., 
I> 

F 02 (r) = (nO)"IL;e i 1>'f'('111 al>a_1> I '11)( '111 'I1t1, 
I> 

F20(r) = F 02(- r), 

FI2 (r) = (nO)-INQI /2 L:; 
i>2l>al>4 

(i>2-P3+1>4) 

+ a;4a;3aI>2) 1'11) ('111'11)-1 

F 22(r) = (nO)"2L:; {I + exp[ - i(P1 - P2)· r]} 
1>11>2 

x [('111 a;1 a~a1>1a1>21 '11) ('111 '11)-1 

- (n(P1»(n(P2» ], 

+ (nOt2 L:; exp[ - i(P1 + P2)· r] 
P11>2 

X{('I11 a~a:'1a'2a_JIoz I '11)('111 '11)-1 

- (a;1 a: 1>1) (a/>2a..)2}, 

F22(r) = (nO)-2 L exp[-i(P1-P4)' r] 

(1)1+1>2-1>3+1>4) 

X (lJI I a;1a;2 aI>3ap4IlJ1)('I11 '11)-1. 

(2. 12) 

(2.13) 

(2.14) 

(2. 15) 

(2. 16) 

(2.17) 

(2.18) 

(2.19) 

In equations (2.12)-(2.19), (n(p» is the momentum dis
tribution, already calculated in I and given there by 
(5.10). 

The calculation of B(q) and the F/,(r) to second order 
in the (real) two-body interaction matrix element 
(k1k21 V(') I k3k~ [see Eq. (1. 2. 2)] now proceeds as 
follows: First we transform to a quasiparticle repre
sentation by using the Bogoliubov transformation 
(1. BI3), which was used to diagonalize the pair Hamil
tonian (1. 2.11) (see Appendix B of I). Then we substitute 
the expression for the state vector 1'11), as given by 
(1. 2. 22)-(1. 2. 30) to second order in V. The perturba
tion theory calculations then proceed exactly as in I, 
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and we summarize only the results here. For the quan
tity B(q) of (2. 13) we find 

B(q)= -1 + [1- a.(q)][1 + a.(q)]-1[1 + 2n.(q)] 

+ Sll(q)/i;, 

where aJq) is given by (1. 4. 3) and 

Sll(q) = - Hl- a_(q)o][l + aJq)0]-1 

xxoL; L; [j;(q)on;(q)] 
1>21>3 Ii kzt 

X [jfiP2)On/p2)]' [knp3)onk(P3)] 

x IAiJk(qp~3) 12 

X [E;(q)o + Ei (P2)0 + Ek(P3 )0]"2 

- t1;[I- a.(q)o][1 + aJq)0]-1 L:; L; 
1>21>3'4 /Jk/at 

x [j;(q)On;(q)] 

x [jfiP2)on/p2)]' [kfk(PS)Onk(PS)][if/(P4)Onr(P4)] 

(2.20) 

x IA"kl(qp~aP4) 12. [E;(q)O + E,(P2 )0 + Ek(P3)0 + E,(P4)0]-2 

- 1;aJq)o[l + a_(q)0]-2[2E.(q)0]-1 

x fxo L: r L; [jf,(P2)On,(P2) ][kfk(P3)Onk(PS)] 
\ ,.Jkot JIozI>S 

XA~mqp~3)A_"ik(qP~3) 

x [E,.(q)o + EJ(P2)0 + Ek(P3)0]-1 

+ ~ L; L:; r [jf,(P2)On/P2)][kfk(P3)Onk(P3)] 
rik/-" />21>31>4 

X [If,(p4)On/(p4)]A~R/(qp~aP4)A_r'kl(qP~sP4) 

x [E,.(q)O + E,(P2)0 + Ek(P3)0 + E,(P4)0]-1). (2.21) 

Here E+(q)o is the quasiparticle energy (1. 2.17) obtained 
by diagonalizing the pair-Hamiltonian modeL The (real) 
quantities a_,(p)o, fl(P)o' Aiik(PtP~3)' and A'ik/(P1P~aP4)' 
with L,'P I =0 in the A functions, are given by Eqs. 
(1. 2. 20), (I. 2. 21), (1. C. 12), and (1. C. 14), respectively. 
Finally, the quantities nt(p) in Eq. (2.21) are the eigen
values of the quasiparticle occupation-number operators 
~;1;I>' - i;/>'t;, which were introduced via the Bogoliubov 
transformation [see Eqs. (1. B13) and (I. 2.15)]. Thus 

n+(p) = (1;;1;)0' (2. 22) 
n_(p) = - (1;1>1;;.> = - [1 + n.(p)]. 

strictly speaking, we must set n + = 0 and n_ = - 1 in 
Eqs. (2.20)-(2.22), since we consider only the limit 
T = 0 "K in this paper. However, we shall continue to 
retain the functional dependence of various quantities on 
nt(p), because the T '" 0 "K results for correlation func
tions are obtained by setting n+ = [exp(,6e.) - 1]-1 and n_ 
= - [1 + nJ, where,6 = (KTt1

• This procedure is justi
fied in Appendices A and B of 1. 

The calculation of F 20(r) and F 02(r) is facilitated by 
defining the quantity 

1)(p) = ('111 a;a:1> + a,a_,1 'I1)('I1llJ1) -1. (2. 23) 

We can then rewrite F 20(r) and F 02(r)in terms of 1)(P), 
for Hermitian V('), as 

(2.24) , 
It is easy to show that the quantity 1)(p) is related to 
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B(p) of Eq. (2.13) by 

11(P) = B(p) - 2(n(p». (2.25) 

Upon substituting Eqs. (2.20) and (1. 5. 10) into (2.25) 
and simplifying, we obtain the following expression for 
l1(P) : 

11(P) = - 2f.(P)aJP)[1 + 2n.(p)] + A 20(P), (2.26) 

A 20(P) = 2xQ,f.(p)oa_(p)0 ~ ~ [J/(p)on/(p)][jfN2)OnN2)] 
P:!P:l Uk 2 

x [kfk(P3)Onk(P3)] IAiJk(PP~3) I [Ei(P)o + Ej(P2)0 

+ Ek(P3)0]-2 + tr.(P)oQlJP)o ~ 6 [!;(p)onj(p)] 
/>zP3P4 jjk' 

x [jfJ(P2)onj(P2) ][kfk(P3)Onk(P3) ][If,(P 4)On ,(p 4)] 

x IAljk,(PP~~4W [Ei(P)o + Ej (P2)0 + Ek(P3)0 + E,(P4)0]-2 

+ txQ,f.(P)oQl_(P)o[J.(P)o + fJP)o] 

x ~ ~ [jfj(P2)onN2)][kfk(Pg)Onk(Pg)] 
P~g ijk 

xA \J~(PP~3)A_iik(PP~3)[Ei(P)0 + E/P2)0 + Ek(pg)O]-l 

x [E j(P2)0 + Ek(P3)0 - Ej(p)ot1 

+ ~f.(P)oQl-(P)o[j.(P)o + fJP)o] 

x L L Ufj(P2)OnN2)][kfk(Pg)Onk(P3)][lf,(P4)on,(P4 )] 

P21'3/>4 Jk' 

xA~r/.,(pp~~4) A_iJk ,<PPozPsP4) 

x [Ej (P2)O + Ek(Pg)o + E,(P4 )o + Ej(p)O]-l. [E j (P2)o + Ek(Pg)o 

+ E,(P4)O - E;(P)O]-l. (2.27) 

The quantities F 12(r) and F 22(r) are given similarly, 
to O(V) only, by 

where 

x [kfk(P3)Onk(Pg)][QI-k(P3)OQl-;(q)o - QI-j(P2)O] 

XAJki(P~3 - q)[Ej(P2)o + Ek(P3)O + Ei(q)O]-l, 

(2.2S) 

(2.29) 

(2.30) 

S22(q) = 2(nQ,t1 ~ O.,PCP4 ~ [if;(P1)oQl_;(P1)Onj(P1)] 
P1P2P3/>4 iJk' 

X Uf;{P2)OQl-j(P2)Onj(P2) ][kfk(Pg)Onk(pg)] 

x [If,(p4)Onr(P4)]Aijk,(P1P~~4) 

x [Ej(P1)o + EiP2)o + Ek(PS>o + E,(P4)0]-1. (2.31) 

Fortunately, it is not necessary for us to include O(V2) 
terms in these last two quantities, to the order of in
terest required in Sec. 3 for the DHSBG calculation of 
the structure factor. The quantity F22(r) can be shown 
to be O(Vg

); hence we shall not calculate this term in 
this paper. These equations complete the formal cal
culation of the radial distribution function P2(r). 

The structure factor is obtained by substituting Eqs. 
(2.10)-(2.31) into (2.9). We then obtain 

Sjn(q) = ~[1 + 2n.(q)][1- QlJq)][1 + QlJq)]-l + S2(q) 

+ Sl1(q) + S12(q) + S22(q) + S22(q) + O(V2), 
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where Sl1(q), S12(q), and S22(q) are given by Eqs. (2.21), 
(2.30), and (2.31), respectively, and 

S2(q) = (1- 0 + (nQ,t1 ~ [(n(p» (n(p + q» + ~(Pm(P + q)], 
P 

(2.33) 

(2.34) 

3. DHSBG CALCULATION OF STRUCTURE FACTOR 

In this section we shall derive an explicit expression 
for the structure factor for the model system of a dilute 
hard sphere Bose gas. In Appendix F of I we have out
lined in detail how to obtain DHSBG results from corre
sponding perturbation theory results. Upon applying this 
procedure to the results of Sec. 2, it is straightforward 
to deduce the following expression for the structure 
factor at T = 0 OK (which corresponds to n. = 0 and n_ 
=-1): 

S ;n(q) = ~ [1 - QI_(q) ][1 + QI_(q) ]-1 + S2(q) + Sl1 (q) 

(3.1) 

In obtaining (3.1) from (2.32) we have neglected the 
quantity S22(q) of (2.31), because it involves summation 
over three independent momenta. The reason is ex
plained following Eq. (F21b) of 1. For the same reason 
we may immediately neglect S22(q) and those parts of 
Su(q), QlJq), (n(p» and 11(P) which involve three or more 
independent momenta. 

The quantity ~ in Eq. (3.1), which denotes the frac
tion of particles in the zero-momentum state, has al
ready been evaluated in 1. From (1. FS) we have 

~ = 1- Hneag/7T)1/2 + O(nag
). (3.2) 

We also need a second-order expression for the quantity 
[1- QI_(P)][1 + QI_(P)]-l and hence for QlJP). Here we 
appeal to Eq. (1. D7) for OQl_(P). But we must also refer 
to Eqs. (I. D2) and (I. D4), with Ali(p)2 - Al/(P)2 - og, 
because the quantity QI-i(P)O of (1. F6) is only an approxi
mation to the corresponding quantity of (1. 2. 20). Thus, 
the first-order energies in Eqs. (1. F19) and (1. F20) 
also contribute to the expression for OQl_(P). Similar 
considerations apply to the calculation of OE.(q) in Eq. 
(3.10) below. With these remarks in mind, and with 
the aid of other equations from Appendix F of I, we 
obtain 

QI_(P) = QlJp)o + OQlJP), (3.3) 

QlJp)o = 1 + 2y2 - 2y(y2 + 1)1/2, (3.4) 

OQlJP) = t w2 H2E.(P)o]-1(nQ,)-1 L f.(P2)O!.(Pg)o 
/>zP3 

x Q(PP~s)R(PP~s)[(E,(P2)O + E.(Ps)o + f.{p)O)-l 

+ (E+(P2)O + E.(Ps)o - E.(P)ot1] 

- [2E.(P)O]-lt W(nQ,tl(l + QI_(P)o)2 6 f.<P2)oQl_(P2)o 
/>z 

+ [2E+(P)o]-1 ~ WZ HnQ,t1(1- QI_(P)o)2L [W(P2) - go]-r, 
1'2 

(3.5) 

- QI-(P1)OQl-(P2)O - QlJP1)OQlJP3)o 

- QI_(P2)OQlJPg)o], (3.6) 
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RpJJ.JJ3) = [1 - cdp2)o - adP3 )o + CdPl)OcdP2)O 

+ cdP1)ocdP3)o - adPl)OaJP2)o<dP3)o], (3.7) 

where y = p/Po, with ~ = W~ = 16'1Tan~, and P1 +P2 +P3 
= 0 in the functions Q and R. 

We can now expand the quantity [1 - ajp)][l + ajp)]-l 
to obtain 

~[l-ajp)][l + ajp)]-l 

'" ~[1- ajp)ol[l +ajP)o]-1- 2~[1 + ajp)o]-2Iiajp) 

= ~tf /E.(q)o - 2~[1 + ajP)o]-2Iia_ . (3.8) 

For later convenience we rewrite this last equation as 
follows: 

~[1 - ajq)][l + ajq)]-1 

'" ~tf /E.(q) + ~q2[IiE .. (q)/~(q)] - 2~[1 + ajq)o]-2Iiajq) 

= ~tf /E.(q) + ~[H A (q)/E.(q)o] + O(na3), (3.9) 
where 

H A (q) = [1 - ajq)o][l + ajq)o]-1IiE.(q) 

(3.10) 

After substituting Eqs. (I. 4. 30), (I. 4. 31), and (3.5) into 
(3.10), and recalling the remarks above (3.3) before 
simplifying, we obtain for H A (q) at T = 0 "K .the result 

H A (q) = - t~~(n~W1[l + ajq)o]-1 Ld.(P2)O!.(P3)O 
I'2P3 

x [1 - a(P2)oa(Pa)o]{Q(qP.JJa)k(P2)o + E+(P3)0 + E+(q) 0]-1 

+ R(qP~a)[E'(P2)O + E.(Pa)o - E.(q)O]-1} 

+ W(m1)-1:B!.(P2)Oajp2)o' (3.11) 
P2 

The last term in (3.11) occurs effectively as a subtrac
tion term, as explained following (I. F16). 

We now give DHSBG .limits for the quantities Sl1(q), 
S12(q), and S2(q) of Eqs. (2.21), (2.30), and (2.33), 
respectively, following the procedure outlined in 
Appendix F of I. We find 

Sl1(q) =Sl1(q)A +Sl1(q)B' (3.12) 

where 

Sl1(q)A = (W02[l + ajq)o]-2(nQ>-1 'Ld.(P2)o!.(Pa)o 
PaPa 

X [Q(qP.JJa)]2k(P2)o + E.(Pa)o + E.(q)O]-2, (3.13) 

Sl1(q)B=(W~)2ajq)o(nQt1[l + ajq)o]-2 

X :B !,(P2)o!.(Pa)oQ(qP~a)R(qP~a) 
I'2Pa 

X [E.(P2)O + E.(Pa)o + E.(q)o ]-1 

X k(P2)O + E.(Ps)o - E.(q)o]-t, (3.14) 

S12(q) = - 4W~(nQt1[l - a~(q)o]-1 :B [J.(P2)O!.(Pa)o] 
1>2Pa 

xQ(qP~a)[a_(P2)O - a_(Ps)oajq)o] 

X [E.(P2)O + E.(ps)o + dq)O]-1, 

S2(q) = (nQ)-1:0 ajP)o[ajp)o + a_(p + q)o] 
P 

X!'(P)o!.(P + q)o, 

(3.15) 

(3.16) 

where W= 167Tan. These results disagree in part with 
corresponding results obtained by T. T. Wu. 6 
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In the low-momentum limit the quantities, HA(q), 
S2(q), Sl1(q), and S12(q) can be evaluated approximately. 
We obtain the limiting expressions 

H A (q) = - t W(n~aa3 /7T)1/2[y2 + O(y4)], (3. 17) 

S2(q)=2(n~aas/7T)1/2[1T-y +O(y2)], (3.18) 

Sl1(q) = 2(neaa /1T)1/2[1T - 3y +O(y2)], 

S12(q) = - 4(ne~ /1T)1/2[1T - 3y + O(y2lny)]. 

(3.19) 

(3.20) 

Finally, upon substituting Eqs. (3.9), (3.10), and 
(3.17)-(3.20) into (3.1), and using (3.2), we obtain the 
following expression for S/n(q) in the low-momentum 
limit: 

Sln(q)=q2/W.XC(q) (q- 0), 

where 

(3.21) 

(3.22) 

and E.(q) is given by Eq. (I. F25). Thus we have demon
strated, to second order in the DHSBG parameter 
(naa)1/2, that our expression for the structure factor 
satisfies the Feynman-Bijl relation (1. 1) with Wexc(q) 
= E.(q). It is important to observe, however, that the 
formal expressions for Sin(q) and E1(q), given in Sec. 2 
and by Eqs. (I. 4.23)-(1. 4. 31), will not satisfy the 
Feynman-Bijl relation in general, but only in the low
momentum limit. 

The general validity of the Feynman-Bijl relation in 
the low-momentum limit has been proved earlier by 
many authors. 7 Therefore, the explicit verification of 
this relation in the present paper means that our formal 
expressions for the structure factor can be used as a 
consistency check on other calculations of this quantity 
for adegenerate Bose system. 

4. SUMMARY 

The radial distribution function and the structure fac
tor have been calculated for a degenerate Bose system 
to second order in perturbation theory using the pair 
Hamiltonian model as a starting point. These results 
will constitute an important check on any realistic cal
culations of the radial distribution function and the 
structure factor. The special case of a dilute hard 
sphere Bose gas has been investigated in detail at 
T = 0 OK. In the low-momentum limit our explicit ex
pression for the structure factor satisfies the Feynman
Bijl relation. 

*Based in part on a thesis submitted by one of us (I. R. R.) to 
the Department of Physics, University of Colorado, in partial 
fulfillment of the requirements for the Ph. D. degree (1969). 

11. RamaRao and F. Mohling, J. Math. Phys. 12, 1631 (1971); 
hereafter referred to as I. Equation (n) of this paper will be 
referred to as (I. n). 

2T. T. Wu, Phys. Rev. 115, 1390 (1959). 
SR. P. Feynman, Phys. Rev. 94, 262 (1954). 
4L. Van Hove and K. W. McVoy, Nucl. Phys. 33, 468 (1962). 
5D.G. Henshaw, Phys. Rev. 119, 9 (1960). 
6See Sec. 7C of Reference 2. 
1See , e.g., K. Huang and A. Klein, Ann. Phys. 3D, 203 

(1964); and J. Gavoret and P. Nozieres, Ann. Phys. (N. y.) 
28, 349 (1964). 
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A scalar-tensor theory of gravitation is constructed using a non-Riemannian geometry in which both 
the metric tensor and the scalar function have an unambiguous geometric interpretation. The scalar 
function is introduced by defining a linear connection with non vanishing torsion. The field equations 
of the theory, and the Lagrangian from which they are derived, are identical to those given by 
Dicke in an alternate formulation of the Brans-Dicke theory. By using the static spherically 
symmetric solution to the field equations it is found that, with a proper choice of parameter, this 
theory agrees with experimental results in the three classical tests of a gravitational theory. 

I. INTRODUCTION 

Probably the major difference between the general 
theory of relativity and the classical theory of gravita
tion is the geometrization of the gravitational field. 
More precisely, space-time is described as a four
dimensional Riemannian manifold in which the compo
nents gij of the Riemannian metric completely describe 
the gravitational field. 

Motivated by ideas of Mach, Brans and Dickel intro
duced an alternate theory of gravitation involving a 
scalar function as well as the metric tensor. This 
scalar-tensor theory is not purely geometrical how
ever, as the scalar field is introduced in a rather ad 
hoc manner into the Riemannian manifold. 

Several attempts have been made to cast a scalar
tensor theory of gravitation in a wider geometrical 
context. Brans and Dickel observed in their work the 
formal connection between their theory and that of 
Jordan2 which uses a five-dimensional manifold. Peters3 

has shown that the scalar field of Dicke can be geome
trized using the techniques of geometrodynamics4

; un
fortunately, this method restricts consideration only 
to source-free regions of space-time. Rosss has con
structed a scalar-tensor theory of gravitation using the 
Weyl formulation of Riemannian geometry, and Dunn 
and Sen6 have introduced a scalar-tensor theory mod
eled on a modification of Riemannian geometry sug
gested by Lyra. 

In the present work we introduce a geometry which 
differs from the usual Riemannian geometry in that its 
linear connection has nonvanishing torsion defined in 
terms of a scalar function. In this way both the metric 
tensor and the scalar field have a well-defined geomet
ric meaning in the spirit of general relativity. In Seco 
II, we define the geometry and describe Some of its rel
evant properties. In Sec. III, we formulate a scalar
tensor theory of gravitation whose field equations are 
identical to those given by Dicke7 in an alternate pre
sentation of the Brans-Dicke theory. In Seco IV, the 
static spherically symmetric solution to the field equa
tions is found and used to compute the values of red 
shift, deflection of light, and perihelion advance. 

II. DEFINITION OF THE GEOMETRY 

Let M be a four-dimensional C"' manifold; X(M) de
notes the Lie algebra of C"' vector fields on M and 
C "'(M) the ring of C"' functions on M. We suppose that 
M is endowed with a nonsingular metric, that is, a 
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second-order symmetric covariant tensor field g such 
that, at every point mE M, the induced form gm on the 
tangent space at m is nondegenerate and is given in a 
local coordinate system by components giJo 

We also require a linear connection V on M which 
allows one to compare vectors at different points of M. 
RecallS that a linear connection V is a mapping 
V: X(M) X X(M) - X(M), usually written (X, Y) - VxY which 
satisfies 

(i) Vx(Y+Z)=VxY+VxZ 

(ii) VfX+/fyZ=jVxZ + gVyZ 

(iii) Vx!y=X(j) Y+jVxY 

wherej, gE C~(M) and X, Y, Z E X(M). 

Choosing a local coordinate system (Xi) with basis 
vectors {ej = a/axil, the components of the connection 
are given by V •. ej = r'jjekO The torsion of V is the 
mapping TORv(X, Y) = VxY - VyX - [X, Y] and is given 
in a local coordinate system by TORv(eh ej ) 

= (r~j - r7 j )ek • 

The linear connection Venables one to define a gen
eral covariant derivative of any tensor field on M with 
respect to a vector field X. This derivative preserves 
the tensor type and in particular the covariant deriva
tive of the metric tensor Vxg is again a second-order 
covariant tensor field defined by 

Vxg(Y, Z) =X(g(Y, Z» - g(VxY, Z) - g(Y, VxZ), 

X, Y, Z E X(M). 
(2.1) 

By a geometry we will mean a manifold M endowed 
with a metric g and a connection V. The geometry of 
interest for the scalar-tensor theory is given by the 
following. 

Proposition 1: Given a metric g and a scalar function 
:\ E C"'(M) which vanishes nowhere on M, there exists a 
unique connection V on M satisfying 

Vzg(X, Y) = 0, 

TORv(X, Y) = (k/:\) X(:\) Y - (k/:\) Y(:\) X 

for all X, Y, Z E X(M),k a constant. 

(2.2) 

(2.3) 

Prooj9: Notice that if k = 0 or :\ is a constant the 
connection is metric preserving and torsion-free; i. e., 
(2.2) and (2.3) reduce to the usual definition of the 
Riemannian connection. The proof of the general case 
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follows by expanding (2.2) and (2.3) in a local coordi
nate system using (2. 1) and exhibiting the unique con
nection components 

(2.4) 

where {Ii} are the Christoffel symbols of the metric gu. 

We call a geometry defined by a metric g and the 
unique linear connection (2.4) a scalar-tensor geome
try. Such a geometry is completely determined given 
the metric, the scalar function A, and the constant k. 

The curvature tensor for a connection V is defined 
by 

K(X, Y)Z= VxVyZ - VyVXZ - Vrx.nZ, 

X, Y, Z E X(M). 
(2.5) 

The curvature tensor of the scalar-tensor geometry 
is given in a local coordinate system by 

(2.6) 

where R~il is the Riemannian curvature tensor defined 
by the Christoffel symbols of the metric g and a semi
colon denotes covariant differentiation with respect to 
these Christoffel symbols. 

Proposition 2: If the tensor K of covariant degree 4 
is defined by K(X, Y, z, W) ==g(x, K(Z, W) Y);X, Y, Z, W 
E X(M), then the following relations are true for the 
scalar-tensor curvature tensor: 

(a) K(X, Y) Z + K(Z, X) Y + K(Y, Z)X == 0, 

(b) K(X, Y,Z, W)=-K(Y,X,Z, W), 

(c) K(X, Y, Z, W) = - K(X, Y, W, Z), 

(d) K(X, Y,Z, W)=K(Z, W,X, Y), 

i. e., the curvature tensor K';IJ has exactly the same 
algebraic symmetries as the Riemannian curvature 
tensor RIO. 

Proof: For (a), use the Jacobi identity, Eq. (2.3) and 
compute. (b), (c), and (d) follow as in the Riemannian 
case. 8 

Because of the symmetries of the curvature tensor 
K';ij, we can contract to form a unique (up to sign) 
symmetric covariant tensor of degree two, KII =K!sl, 
and hence a unique curvature scalar 

(2.7) 
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where R is the curvature scalar defined by the metric 
g and we assume A> O. 

The geodeSic equations for the scalar-tensor geom
etry, i. e., those curves whose tangent vectors X satis
fy VxX = 0, are given in a local coordinate system by 

(2.8) 
For timelike geodesics we may choose the parameter 

s such that gil dx i 
/ ds dx j 

/ ds = 1 along the traj ectory. 
For null geodesics, the reparametrization t= fos Ak(S) ds 
reduces (2.8) to the form 

tfi'xl I dx' dxk 
dt2 + {jll} (jf (jf = 0 (2.9) 

which are the same trajectories as the null geodesics 
of the Riemannian geometry determined by g. 

III. A SCALAR TENSOR THEORY OF GRAVITATION 

We choose the scalar-tensor geometry determined 
by metric g, scalar A, and constant k as the geometriC 
framework for a scalar-tensor theory of gravitation. 

The vacuum field equations of general relativity can 
be obtained from the variational principle 

I5f R.)-gcrx=O (3.1) 

where R is the curvature scalar of the metric g. In our 
scalar-tensor geometry, this variational principle 
becomes 

15 f K.)-g crx=O (3.2) 

where K is given by (2.7). On variation of (3.2) with 
respect to g/j and A, the vacuum field equations are 

R 1. _ 2 (A'kA,j 1 A.rA,r 
iJ-zgljR-6k A -zgij -r1' (3.3) 

il . AA; .r-;; 
- (A ~gg'S) _ ~ gS' y- g = O. (3.4) ilxS ,lY-15 A 

Several things should be noted about these equations. 
First, the variation principle (3.2) and hence the field 
equations (3,3) and (3.4) are identical in the vacuum 
case to those given by Dicke7 in the second formulation 
of the Brans-Dicke theory. Second, although the curva
ture tensor (2.6) of the scalar-tensor geometry does 
not satisfy the second Bianchi identity, 8 the invariance 
of the integral (3.2) under arbitrary coordinate trans
formations yields conservation laws as in the relativis
tic case,10 Finally, we have considered here only re
gions of space-time with zero charge and mass densi
ties. As in general relativity, we can generalize our 
Lagrangian to include such terms. The precise form of 
this matter Lagrangian goes beyond the geometric con
siderations of this work, however, and we shall limit 
ourselves to regions where charge and mass densities 
vanish. 

Consider now the solution to the field equations (3.3) 
and (3.4) for the static spherically symmetric field 
about a point mass. We express the line element in 
isotropic form 

(3.5) 
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where a and ~ are functions of r only. The general 
vacuum solution for k * 0 is given by 

2", 20< [1- B/rl 
goo=e =¢oe 0 l+B/rJ 

(2+C) Ip 

_28 28 ( / )4 [1 -B/r] - gll = e- = ¢o e 0 1 + B r 1 + B/r 

f1 - B/ rJ Clp 
A=¢O l) +B/r 

where 

p = [(3kZ +t) CZ + C + l]l/Z 

(ZP-C-2) Ip 

(3.6) 

(3.7) 

(3.8) 

and ao, /30, ¢o, B, and C are arbitrary constants. This 
solution is also valid for k = 0 if we restrict the possible 
values of the constant C to C *- 2. In this case the 
geometry defined by (2.2) and (2.3) is Riemannian and 
the metric (3.6) is the Schwarz schild solution of general 
relativity. 

IV. TESTS OF THE THEORY 

In order to compare the theoretical predictions of 
the scalar-tensor theory with experimental results we 
must specify the arbitrary constants in (3.6). We as
sume, therefore, that the solution (3.6) is asymptotical
ly flat; L e., as r - 00, glj -1]1}, where 1] iJ is the 
Minkowski metric, and also that the weak-field limit of 
the timelike geodesics (2.8) correspond to Newtonian 
theoryll for a single central pointmass M. This second 
assumption yields 

1_2GM/rcz=goo+lnA2k (4.1) 

where G is the gravitational constanL These two condi
tions specify the constants as follows: 

¢o= 1, ao=f3o= 0, 
(4.2) 

We can now examine the predictions of the scalar
tensor theory with respect to the three classical tests. 

The gravitational red shift is determined by goo to 
first order in l/r. To obtain agreement with experi
mental results, using (3.6), we must have 

B[(2 + C)/p] = G'M/ c2 

where G' is the gravitational constant measured 
experimentally. 

(4.3) 

The deflection of light is determined, not by goo alone, 
but from the ratio gll/ goo. It is easily shown using first
order terms in (3.6) that the light deflection computed 
from this theory is 

01)= (G'/G) X (general relativity result). (4.4) 

Finally, the advance of the perihelion of a planetary 
orbit requires goo to second order in l/r and gu to first 
order. The result of this calculation is that the perihe
lion rotation rate of a planetary orbit is 
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[t(G'/G) +t]x(general relativity result). (4.5) 

We have said nothing concerning the possible values 
of the constant k introduced in the definition of the 
scalar-tensor geometry. Combining (4.2) and (4.3), 
we see that k and C must satisfy 

1 + 2kC/(2 + C) = G/G'. (4.6) 

For G'" G', (4.6) gives C as a well-defined function 
of k as long as k *t (G/G' - 1). For G = G' we must 
have k = 0 or C = 0, both of which imply that the solution 
(3.6) reduces to the Schwarz schild solution of general 
relativity. No other restrictions are placed on k by the 
assumptions made in this work. 

V. CONCLUSION 

In this work we have introduced a scalar-tensor 
theory of gravitation in which both the metric tensor 
and the scalar function have an unambiguous geometric 
interpretation. The vacuum field equations, and the 
Lagrangian from which they are derived, are identical 
to those presented by Dicke in an alternate formulation 
of the Brans-Dicke theory. These two theories are not 
the same however. For example, the geodesics (2.8) 
differ from the equations of motion of test particles in 
Dicke's theory, and also the scalar functions enter the 
two theories in quite different manners. 

A viable theory of gravitation is one which satisfies 
three criterial1

: self-consistency, completeness, and 
agreement with past experiment. The scalar-tensor 
theory as presented here cannot be considered a viable 
gravitational model. For one reason, it is not complete 
since we have given no rules to specify the matter 
Lagrangian; furthermore, the introduction of torsion 
could have observational consequences in other physi
cal applications (only gravitation has been considered 
here). However, the three classical tests of red shift, 
light deflection, and perihelian advance can be accom
modated by the adjustment of the parameter k and hence 
the theory is worthy of further examination. 
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By employing the spin coefficient formalism of Newman and Penrose a direct proof is obtained that 
the Bertotti-Robinson electromagnetic universe is the only conformally flat solution of the source-free 
Einstein-Maxwell equations for nonnull fields. 

1. INTRODUCTION 

Bertottil and Robinson2 have found a solution of the 
Einstein-Maxwell equations in the absence of sources. 
The space-time solution, which can be written in the 
form 

(1.1) 

where e is a constant, is conformally flat and the elec
tromagnetic field is nonnull. This solution was also 
found by Lovelock3 and the interpretation of the solution 
has been discussed by Dolan. 4 

Cahen and LeroyS have claimed that the general con
formally flat solution of the Einstein-Maxwell equations 
for nonnull fields is of the form 

(1. 2) 

where z is a complex coordinate and K is the constant 
curvature of the surfaces u = r = const. When K > 0, this 
solution is precisely (1.1). The case when K <0, which 
Cahen and Leroy apparently regarded as a possibility, 
can be dismissed on the grounds that the energy condi
tion is violated, as we show in the Appendix to this 
article. The proof given by Cahen and Leroy that (1. 2), 
and hence (1. 1), is the general solution to the problem 
is not satisfactory since they apply a limiting process to 
type N solutions of the Einstein-Maxwell equations and 
appear to neglect the possibility of conformally flat 
solutions being derived by applying a Similar limiting 
process to type D solutions; the existence of this possi
bility is clear from the Penrose diagram. 6 Further
more, it has not been proved that all conformally flat 
solutions are necessarily obtained by the limiting 
process. 

In this article we give a direct proof that (1.1) is in
deed the unique conformally flat solution of the source
free Einstein-Maxwell equations for a nonnull electro
magnetic field. The method of solution is via the spin 
coefficient formalism of Newman and Penrose, 7 and we 
lean on the calculations described by Newman, 
Tamburino, and Unti8 and Kinnersley. 9 This method 
has the advantage of automatically eliminating the case 
K < 0 in (1. 2) and leads only to the positive curvature 
form (1.1). 

2. NOTATION AND EQUATIONS 

A tetrad system of null vectors (l", n", m", mIL), where 
l", nIL are real and m", mIL are complex conjugate vec
tors, is defined by the relations 

with all other contractions zero. 

If F"v is the electromagnetic tensor then the three 
"Maxwell scalars" are defined by 

and for a nonnull field the tetrad can be chosenlo so that 
7>0 = cf>2 = 0, cf>l'" cf> * 0. In this case Z", n" are the prinCi
pal null vectors of the electromagnetic field. 

Dolan4 showed that when the condition for conformal 
flatness is used, i. e., the vanishing of the five Weyl 
scalars, eight of the spin coefficients vanish. The four 
remaining nonzero spin coefficients are 

E=t(l,,;vn"lv -m,,;vm"ZV), 

y=tU,,;vn"nv - m,,;v mJJ.nV) , 

a =t(Z .. ;vn"mv- m,,;v m"i1iV) , 

i3=t(Z,,;vn"mv -m,,;vm"mV). 

As a result it is found that cf> is a constant since the 
Maxwell equations become 

Dcf>= Acf> = 6cf> ={)cf> =0, 

where D, A, 6, () are differential operators defined by 

Dcf>=cf>;"Z", Acf>=cf>;"n", 

ocf>=cf>;"m", 6cf>=cf>;"m". 

By a suitable choice of units the Einstein-Maxwell 
field equations may be written in the form 

tf> AB = cf>A1)B' 

where tf> AB are the complex tetrad components of the 
Ricci tensor and A, B take the values 0, 1, 2. In the 
case under consideration here it follows that the only 
nonzero component of tf> AB is tf> 11 = cf>1). 

The nontrivial Newman-Penrose equations are 

Da - {)E = (f - 2E)a - j3E, 

D i3 - 6E = - E i3 - aE, 

Dy - AE = - (€ + E)y - (y + y)€ + cf> 1> , 
6 a - r; i3 = a ii + i3j3 - 2 a i3 + cf> 1>, 
6y - Ai3= -(a + (3)y - i3(y -y), 

3. SIMPLIFICATION OF THE EQUATIONS 

(2.1) 

In order to preserve Z", nJJ. as the prinCipal null vec-
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tors of the electromagnetic field, the available tetrad 
freedom is confined to rotations of the form 

l"'-Rl"', 

n'" - R-ln"', 

mIL-eISm", 

(3.1) 

where R > 0, S are real functions. By a combination of 
these rotations we can choose either € = ° or 'I' = ° but 
not both. We will choose € = 0, and this is preserved 
under the rotations (3.1) provided that DR =DS=O. We 
may also choose a + {3 = T = 0, and this is preserved if 
OR=O. 

Following Newman and Penrose, 7 we choose coordi
nates such that I'" = O2 ''' and x2 = r is an affine parameter 
along l". The tetrad components are 

to' =(0, 1, 0, 0), 

nIL =(1, U, )(3, ~), 

mIL =(0, w, e, ~4) 

so that, writing Xl = u, the differential operators are 

a 
D=-, ar 

a a I a 
A=U-+-+X -I' ar au ax 

a . a 
O=w- +e-;-::r' ar ax 

where i=3, 4. 

Equations (2.1) now take the form 

Dy= cf>1), 

O<l + ()a = 4<la + cf>1), 

0'1' + Aa = a(y -y), 

0('1' +y) = 0, 

(3.2a) 

(3.2b) 

(3.2c) 

(3.2d) 

(3.2e) 

and, in addition, we obtain the following equations for 
the quantities U, w, Xl, ~/: 

DU = - ('I' +y), 

Dw=O, 

DXi=O, 

De=O, 

OU - Aw = - ('I' - y)w, 

OXI 
- A~I = - ('I' -yH 1

, 

'Ow - Ow=2<lW -2aw, 

6~1- Op =2<le - 2ap. 

The commutation relations, which are 

AD -DA= ('I' +y)D, 

OD-DO=O, 

6A - A6 = - ('I' - y)O, 

06 - 60 = - 2<l0 +2a6, 

give no further information. 
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(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

(3.3e) 

(3.3f) 

(3.3g) 

(3.3h) 

Since cf> is a constant, we put cf>(f) =ie-2, where e is a 
nonzero real constant, and integrate the radial equations 
(3.2a,b) and (3.3a, b, c) to obtain 

<l = <l0, 

y=yo+ie-2r, 

U= UO _(yo+yO)r_ie-2r2, 

° w=w, 

Xt=XO i , 

~i=Ci, 

(3.4a) 

(3.4b) 

(3.4c) 

(3.4d) 

(3.4e) 

(3.4f) 

where the superscript ° indicates independence of r. 

From (3. 2e) and (3. 4c) we calculate 

OU = CiU ~ i - WO(yO + yO} +2e-2 rwo, 

but from (3. 3e), (3. 4b, d) we see that OU is independent 
of r. It follows that W

O = ° and the non radial equations 
become 

toi~o + to/~O -4~0;;.0 +!.e-2 
<, U,i S U,i- uu 2 , 

~OiyO, i + (li°,l + XO/(liO, / = CiO(yO _ yO), 

~Oi(yO+yO),i=O, 

~oiuo,/=O, 

~Oj XO/,j _ Ct,l _ xoj ~O/ ,j = _ ('1'0 _ yo}~oi, 

1;0j ~O/ ,j _ ~Oj~o/,j = 2<l0 ~o i _ 2(i0-r i. 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

(3.5e) 

(3.5f) 

Following an argument used by Kinnersley, 9 we can 
eliminate U O and yO+yO by means of a combined coor
dinate transformation and tetrad rotation of the form 

l'" - R(xl}l", 

n'" - R-l(xl}n"', 

xl-j/R(v)dv, 

r- rR"l(xl} + UO j(x l ). 

Since UO and yO are, from (3. 5c, d), arbitrary functions 
of Xl, we can find functions R, j such that the new UO 
and y. + yO are zero provided that sufficient assumptions 
of continuity are made. As a result of this we have 

(3.6) 

Using the fact that '1'0 +yO =0 a tetrad rotation of the 
form 

can be used to set 

(3.7) 

Since both S and yO are independent of r. In order to 
preserve (3.7), future rotations must satisfy AS=O. 

The coordinate transformations 

x 3 
- e3(x\ x3

, X4), 

X4 - e4(x\ x" x4
) 

can be used to set 

and, from Eqs. (3.5b, e) this implies that 

(3.8) 
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(3.9a) 

(3.9b) 

As a result of Eq. (3.8) the requirement that future 
rotations must satisfy DS = t:.S = 0 implies that S must 
be independent of Xl and r. Since a O and ~03 are both 
functions of x3 and X4 only, we can now show that by a 
rotation of the form m"'- eISm"', where S=S(x3, X4), 
it is possible to make both aO and ~03 real. Under this 
rotation aO and (3 become 

aO' = e-iS(a o + ti6S) , 

(3'=e IS C3. 

For aO', ~03' to be real, we have 

e-iS(ao +h~OjS) _ eIS((i0 _ ti~OjS) = 0, (3. lOa) 

(3. lOb) 

Differentiating the last equation with respect to xi 
(j=3, 4), we find 

iSje lS ~03 + e-IS~03) + els ~03,j _ e-IS~03,j = 0, 

and, substituting for S,j in (3.10a), we obtain 

e -is [2ao(e iS (3 + e-IS~03) _1:° j(e iS (3,j _ e- iS1:03 ) 1 
=eiS[2(i0(e-iS~03 +e lS (3) + ~Oj(eIS ~03,j _ e-iS1:03,j))' 

Using Eq. (3. 5f) to simplify, this becomes 

e2IS(~Oj~03,j +2aO(3) = e-2IS(~Oj~03,j +2ao~03). 

Substituting for e21S from (3. lOb) and using (3. 5f) again, 
we obtain finally 

(1:03 ~Oj _ ~03~oj)( ~031:03) ,j = 0, 

i.e., (1:03~04_C31:04)(~031:03),4=0 (3.11) 

The quantity (~03~04 _ ~03~04) is nonzero since it is pro
portional to det g"" and hence the rotation will achieve 
the desired effect if (~03~03) is independent of X4. This 
condition can be satisfied since we still have the coor
dinate freedom expressed by the transformations 

X3 - f3(X\ X4), 

X4_ f4(X3, X4). 

(3. 12a) 

(3.12b) . 

By USing the transformation (3.12a) we can choose the 
coordinate X3 so that (~o31:03) is a function of ~ only. It 
follows that ~03' is also a function of x3 only and since 
~03' is real we can use the remaining coordinate free
dom (3. 12b) to make ~04' imaginary. 

The possibility exists that Eq. (3.11) may be satisfied 
by ~031:o3, and consequently ~03', being a constant rather 
than a function of x3

• Both possibilities are covered by 
using a coordinate transformation of the form x3 

- h(~) 
to transform 

which is equivalent to taking 

~o3' = U2 e)-l 

in the new coordinate system. 

(3.13) 

Discarding the primes and using the facts that a O is 
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real, ~04 is imaginary and yO, ~03 are given by (3.7) and 
(3.13), Eqs. (3.5a, f) lead to 

( "'2 )-1 ° -4 0
2 +1. -2 v ,{, e a ,3 - a 2 e , 

4. THE SOLUTION 

(3.14a) 

(3.14b) 

From Eqs. (3.14a, b) together with equations (3.6), 
(3.7), (3.9a, b), and (3.13) the complete solution is 

~o3=U2et\ 

~04 = i(12 etl A sec(~ - B), 

1 -2 
Y=1le r, 

a = (2{2 e)-ltan(~ - B), 

(4.1) 

where A, B are functions of X4 only. Using the fact that 
the metric tensor is given by 

the matric of the space -time solution is found to be 

ds 2 = e-2 r2 du 2 + 2du dr _ e2(dx3)2 

_ e2 A -2 COS 2(X3 _ B)(dx4)2. 

We can put A = 1 by a redefinition of the X4 coordinate 
and, by calculating the components of the curvature 
tensor, we note that the two-dimensional space with 
metric 

is a space of constant positive curvature so that there 
exists a coordinate system in which the metric takes 
the form ll 

e2(dx3)2 + e2 COS2x3(dx4)2, 

i. e., in which B = O. Hence the most general conformal
ly flat solution of the source -free Einstein-Maxwell 
equations for nonnull fields is 

ds 2 = e-2 r2 du2 + 2du dr _ e2(dx3) 2 _ e2 cos2 ~(dX4)2. 

The coordinate transformations 

r=e2/r', u=l+r', X3=E!-7T/2, x4=1/i 

convert this metric into the form (1.1), which is thus 
the unique solution of this type. 
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APPENDIX 

The energy condition appearing in the Rainich condi
tions is 

where T "'" is the electromagnetic energy tensor and v'" 
is an arbitrary timelike vector. In view of the field 
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equations this can be written in the form 

R .. ~vU.if <0. (AI) 

Now rewrite the metric (1. 2) by defining coordinates 
~(=x3) and 1](=x4) such that z=~ +i1], i.e., 

ds 2 =Kr2du2 + 2dudr - 2(1 + tKp2)-2 (de + d1)2) , 

where p2 = e + 1)2. The nonzero components of the Ricci 
tensor are 

Ru = _K2r2, 

R12 = -K, 

R33 = R44 = - 2K(1 +iKp2) -2. 

The condition (AI) becomes 

Rl'vv"v~ = _K2r2(v 1)2 - 2K V1V2 

_ 2K(1 +tKp2)-2 (V3)2 + (V 4 )21 <0. (A2) 

Since vILis a time like vector, vu.v" is positive, i. e. , 

glLvvl'v"=Kr2(vl)2 +2V 1V2 

_ 2(1 +tKp2)-2 (V 3 )2 +(V4)21 =p2 (A3) 

From Eqs. (A2) and (A3) we find that the energy condi
tion becomes 

(A4) 
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where 

The energy condition (A4) is satisfied only when K > O. 
Thus the case when K <0 may be dismissed. 
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An axiomatic mathematical structure is presented in terms of which arbitrary mathematical models 
of a physical system can be rigorously formulated and studied. Physical systems, observables, and 
states all arise in a natural way from the primitive notion of a physical operation. In particular, the 
structure is independent of the special mathematical completion defined by the quantum mechanical 
model, since no lattice theoretical or Hilbert space assumptions are used. The precise relationship 
between the present structure and the usual quantum mechanical model is investigated in a 
succeeding paper. 

Recent work in the foundations of quantum mechanics 
has led to a variety of axiom sets for the quantum mech
anical model of a physical system,l each with the basic 
aim of elucidating the logical foundations of the model 
in order to determine which elements are physically 
natural and which are basically a priori, and hence poss
ibly dispensable. The present paper in a sense con
tinues Mackey's work in this area,2 since we use four of 
Mackey's axioms substantially intact, with only the modi
fications necessary to guarantee independence from the 
quantum mechanical mode1. 3 These axioms together 
with five others define a logical and mathematical struc
ture which we believe to be both natural and even in
evitable for arbitrary models of actually realizable 
physical systems; because of the independence of the 
resulting structure from the quantum mechanical model, 
we have a rigo.rous basis for the formulation and study 
of general mathematical models of physical systems, 
whether classical, quantum, or of some new type. In 
particular, since systems, observables, and states are 
all given a natural physical interpretation within the 
structure in terms of the primitive notion of a physical 
operation, we have a means of clarifying such trouble
some questions as simultaneous observability, the 
meaning of physical indeterminacy principles, the col
lapse of a state under observation, and the possibility 
of hidden variables. In a succeeding paper we investigate 
the relation of the present structure to the standard 
quantum mechanical model. We will neither need nor 
use in the succeeding paper all of the axioms formulated 
in this paper, but we feel it best to state them now, since 
they are natural physical requirements and future work 
can be built on them. 

In this and the following paper we will use standard 
mathematical and logical notation throughout, and we will 
Signal the end of a formal statement of our axiomatic 
structure with the symbol 0; the letters A, D, T, L, and 
C will stand for "axiom," "definition," "theorem," 
"lemma" and "corollary," respectively. In general, 
square brackets will be used to separate off independent 
segments of a symbolic logic or mathematical state
ment, while curly brackets will be used in defining and 
referring to sets. 

1. THE PHYSICAL UNIVERSE 

Following the axiomatic method, we will need a uni
verse of discourse, consisting of certain undefined ele
ments together with certain elements already defined in 
terms of existing axiomatic structures; thus we will 
feel free to introduce any purely mathematical elements 
into our structure at need and without apology, but phy
Sical elements will have to be introduced as undefined 
terms, whose formal interpretation will be given by 
succeeding axioms, or as terms defined using only pre-

viously introduced elements. We will always have in 
mind a physical interpretation for our axioms and de
finitions, and we will give this interpretation as we go 
along, but it will play no formal part in our axiomatic 
structure; the purpose of this motivating interpretation 
is simply to guarantee the physical realizability of our 
axioms to ensure that we are not playing logical games 
in a physical vacuum. The basic undefined notion we will 
need is that of a physical operation; from this we will 
construct systems, states, and observables. Intuitively, 
we can say that what we mean by an operation is simply 
any action or "interference" in our environment which 
observers can actually perform in practice in a clearly 
communicable way. This latter qualification is intended 
to imply that to each operation there corresponds a list 
of practical instructions for performing the operation.4 

We will also want to include from the start the mathe
matical theory of probability measures in such a way 
that the measures will distinguish between different 
operations. Finally, we want to include the possibility 
of combining two operations in a given order to produce 
a third operation. With this preamble we can now state 
formally: 

U. Our universe of discourse will consist of a set <I> 
together with an associative composition law 

and a mapping 

71: <I> x <B -7 [0, 1] 

(I/J,B) -7 71 <1>(B), 

where <B is the class of all Borel sets 5 in the real line 
R, and [0,1] is the closed unit interval in R. Finally, 
given any two operations ¢, ¢', we have ¢ = ¢' if and 
only if 71 <1>*<1>" = 1T <1>'*<1>'" for all ¢" in <I>. 

Elements ¢, ¢', . .. of the set <I> will be called opera
tions and the mapping 1T will be called the probability 
mapping of our universe. The motivation behind the 
introduction of associativity is the obvious fact that if 
three operations ¢, ¢', ¢" can be performed success
ively at all (i.e., if the corresponding sets of operational 
prescriptions can be taken together in the required order 
as a single actualizable set of prescriptions), then the 
two alternative groupings (¢"*¢'h¢ and ¢"*(¢'*¢),are 
not operationally distinguishable. 

But now it is necessary to take explicit account of the 
fact that two arbitrary sets of operational prescriptions, 
taken together in a certain order, do not always yield a 
new set of prescriptions which can actually be perform
ed, as well as the fact that it is possible to do nothing at 
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all. Also, we want to introduce left inverses for opera
tions. All of this will be taken care of by our first 
axiom: 

A -1. There exist two elements of <1>, specifically, Land 
e, such that, Vcp E <1>: 

L*CP = CPH = cP and e*cp = Cp* e = e. 

Also, vcp E cp - {e}, 3cp-l such that: 

cp-l*¢ = L. o 

We will call L the identity operation, and e the impossible 
operation. The operation L is interpreted as the opera
tion of "doing nothing," while an equation of the form 
Cp'*CP = e is interpreted as meaning that some pres
cription involved in the performance of cP' cannot be 
fulfilled by reason of the previous fulfillment of the 
prescriptions for cp.6 The introduction of the left inverse 
elements is motivated by the general physical require
ment of repeatability of experiments and measurements 
-there must be some operation, even if it is only a 
"gedanken" operation (e.g., time reversal for astro
nomical measurements), by which we can in principle 
return to the original initial conditions and then per
form again our experiment or measurement. 

In the presence of A-I, we can describe our set <I> 
mathematically as a semigroup (that is, a set with an 
associative composition law) with a two-sided identity 
element and a two-sided null element (the impossible 
operation) and, in addition, a left inverse for every ele
ment of the semigroup. From this we have our first 
theorem: 

T-l. The set <I> - {e} is a group. o 
Proof of T -1. The only thing we need to check is that 
the left inverses serve also as right inverses for every 
element of <I> - {e}. This is seen from the following 
line of reasoning: 

QED 

From simple and standard algebraic considerations, we 
now have C-l. The operations L, e, and the two-sided 
inverses of the group <I> - {e} are uniquely defined. 0 

We have introduced the mapping 1T into our structure 
in order to be able to select the elements necessary for 
the construction of physical systems, but before doing 
this we will need some definitions and further axioms. 

D-l. Let 'JIl be the set of all cp E <I> such that the map
ping 1T cp: ill ~ [0, 1] is a probability measure on ill, and let 
<I> 0 be the set of all cp E <I> such that 1T ¢ is the zero 
measure on ill. 0 

If ~ represents the empty set, we can now state our 
second axiom: 

o 

The elements of the set 'JIl will be called the measure
ments of our universe; intuitively, we can describe a 
measurement cp E 'JIl as an operation such that each 
performance p ¢ of ¢ determines a single real number r 
in a well defined way, and repeated performances p , 
p~,p~,yield results r,r',r" ERin accordance with a 
frequency distribution specified by the probability 
measure 1T ¢. We thus give the natural interpretation 
to the number 1T ¢(B) as the probability that the result 
r of an arbitrary performance p ¢ of cP will lie in the 
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Borel set B. A-2 also guarantees that there will be 
measurements in our formal structure, and makes the 
mapping 1T the means of distinguishing measurements 
from all other operations;A-2 also expresses axiomatic
ally the fact that the identity operation and the imposs
ible operation are not measurements. 

For our next axiom we will need to take over from 
measure theory the notion of absolute continuity: a 
measure 1T', in symbols, 1T « 1T', if and only if [1T'(B) = 0] 
= [1T(B) = 0, VB E ill]. We can now state: 

A-3. For all pairs (CP, CP') E 'JIl x <1>, 

(1) 1T ¢*",,« 1T '" 
and 

o 

Our axiom A -3 needs a bit more justification than the 
previous axioms; basically, it expresses our intention (1) 
to make the mappings 1T ¢ express total probabilities, as 
well as our intuition (2) that if a measurement cP is 
possible after some preparatory operation cP' (Le., if 
CP* cP' '" e), then CP* cP' should also be a measurement, in 
general distinct from cP, but related to it by (1) above. 
For example, if ¢ is a measurement and B a Borel set 
such that 1T ",(B) = 0, then there should be no probability, 
from any "source" whatsoever, that the result of a 
performance of ¢*¢,' will lie in B, no matter what pre
paratory operation cP' we use; hence, 1T ¢*¢~B) should 
also be zero. 7 By (2) above, the only instance in which 
¢*¢' is not a measurement is had when it is the im
possible operation, and even then (1) is obeyed, since the 
zero measure is absolutely continuous with respect to 
every measure. Thus, in the presence of A-3, the meas
urements become a very restricted type of operation, 
~ince each measurement must have in its set of opera
tional prescriptions sufficient safeguards to guarantee 
that a unique probability measure will be associated 
with the measurement. It is our belief, however, that all 
of modern physics is predicated on the basis of the 
actual existence of measurements as we have defined 
them, and that the mappings 1T ¢ are sufficient to express 
all physical data. 

It does not seem clear physically, however, that every 
operation which determines a number on each perfor
mance is a measurement-it seems quite conceivable 
that an operation can determine numbers without a prob
ability distribution. We want our structure to make 
allowance for this, and so we introduce: 

D-2. For each ¢ E <1>, let Z( CP) be the union of all open 
intervals Ie R such that 1T ",(/) = 0, and let N( CP) be the 
set defined by: 

Then we define the set :JC. by the prescription: :JC. = {cp E 
<1>: N( CP) '" ~}. 0 

We will call N(¢) the numerical set of the operation ¢, 
and :IT the set of numerical operations of our universe. 
Thus the numerical operations are precisely the opera
tions with nonempty numerical sets; we also have the 
following theorem, characterizing the relationship be
tween numerical operations and measurements: 

T-2. :JC.= {cp E <1>: 3 ¢' E <1>, with CP*CP' E 'JIl}. 0 

Proof of T-2. We have [N(CP) '" ~]~ [3cp' E<I>:R rf
Z(CP*¢')]. But [R rj:. Z(¢*CP')] - [1T¢*¢, '" 0], and by A-2 
[1T¢*¢. '" 0] - (¢*¢' E 'JIl]. Therefore, [N(¢) '" ~]-
[3cp' E <1>: CP*CP' E'JIl]. QED 
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Since for all ¢ E;m we have ¢*L E ;m, we conclude that 
the set of measurements is a subset of the set of num
erical operations;we leave open the possibility that, in 
physical reality, ;)TI is actually equal to :.n. As indicated 
earlier, we interpret :.n as including, besides the mea
surements, all those operations which determine a num
ber on each performance, but do not do so in accordance 
with a probability distribution. From now on, we will 
use the Greek letters 0', f3, ••• to symbolize the num
erical operations (and hence, the measurements also), 
in order to have a convenient way of distinguishing them 
from ot.her operations. 

It will also be useful now to introduce two other 
classes of operations: 

D-3. Let ~ E :.n be the set ~ = {O' E :.n: N(O') C {O, I}}, 
and let !D C ~ be the set !D = {O' E :.IT: N(O') = {I}}. 0 

We call elements of the set ~ questioning operations and 
elements of !D determinations. For questioning opera
tions we will use the symbols q,q',q", •• • ;because they 
have only the numbers 1 and 0 in their numerical sets, 
we give: them the obvious interpretation of operations 
which ask phYSical questions which have yes-no answers. 
The determinations, on the other hand, form the subset 
of those operations in ~ which have only the answer 
"'yes." 

Our final axiom in this section is essentially Mackey's 
axiom ill, extended, however, to include numerical opera
tions.8 

A -4. Let!f be the set of real-valued Borel functions on 
R.5 Then to each pair (O',j) E :.IT x !f there corresponds 
a unique element j( 0') E :.n such that, V( ¢, B) E <P x <3, 

(1) [J(O'h¢ E :.IT] - [O'*¢ E :.IT] 

(2) [O'*¢ E :.IT] - [J(O'h¢ =j(O'*¢)) 

(3) 1T/(a)(B) = 1rJ.f-l(B». o 

The motivation behind A-4 is the same as that given by 
Mackey-physically, the operation j(O') results from 0' 
as follows: whatever we do to perform 0', we perform 
j(O') by simply applying the function j to the numerical 
result obtained in a performance of 0'. Several theorems 
can be proven now. 

T-3. V(O',j) E:.ITx ~,[J(O') E;)TI]<=I> [0' E;)TI]. 0 

Proof of T-3. V(O',j), 1T/(a~m = 1Ta(R), by A-4. Hence, 
[1T /(a) = 0] -- [1f a = 0], and T-3 foHows from A-2. QED 

T-4. veO',!) E :.IT x W, [J(O'h¢ E ;)TI] - [O'*¢ E ;)TIl. 0 

Proof of T-4. By A-4, [J(O'h¢ E ;)TI] => [(h¢ E :.IT], and 

[

O'*¢ E :.n] - [J(O'h¢ =j(O'*¢)]. Hence,[J(O'h¢ E ;)TIl
j(O'*¢) E ;)TI] and so by T-3 we have (1) fj(O'h¢ E ;)TI] -
O'*¢ E ;)TI]. Similarly, by T-3, [O'*¢ E;)TI - [J(O'*¢) E 

;)TI] and by A-4 [O'*¢ E ;)TI] - [J(O'*¢) = j(O')*CP]. There
fore, we have (2) [O'*¢ E ;)TI] =;> [J(O')*¢ E ;)TIl, and T-4 is 
equivalent to the conjunction of (1) and (2). QED 

T-5. The sets ~ and!D are not empty. 

Proof of T-5. For all B E <B, the characteristic func
tion Q B [defined on the real line by the prescription: 

o 

QJr) = l,r E B;QJr) = O,r E B] is a Borel function, 
and for any open interval I such that {O, I} 1- I we obvi-
0usly have Qi(l) =~. Thus the numerical set of QJO'), 
for 0' E :.IT, must be a subset of {O, I}, and so for all 
numerical operations 0' we have QJO') E ~,V BE <B. 
In particular,for a E;)TI, the measurement QR(a) is a 
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determination since its numerical set can only be {I}. 
Since by A -2 ~ is a nonempty subset of :.IT, we see that 
.t and !D are nonempty. QED 

To conclude this section, we will call any formal 
structure U satisfying axioms A-I, through A-4 a 
physical universe. 

2. PHYSICAL SYSTEMS 

We are now in a position to construct physical sys
tems within a physical universe. To begin, for any 
questioning operation q E .t we construct the two sets: 

D-4. <I> == {¢ E <P: q*¢ E !D};:.nq = {O' E :.IT: (H¢ E ;)TI, 
V¢ E <Pqj-. 0 

Now from our description U of the physical universe, 
and the material in footnote 4, Mackey's axioms I and II 
follow immediately as theorems of our present struc
ture, Le., to each pair (0', ¢) E :.ITq x <P q there corres
ponds uniquely a probability measure 11 a • Mackey's 
axiom III also follows from our present ;fructure, and 
so after stating our definition of a phYSical system, we 
will state these three axioms as theorems of our struc
ture.8 

D-5. A structure .E = {ell:' 3 J.J consisting of two sets 
will be called a physical system if and only if there 
exists a questioning operation q with <P q ;>! ~ such that 
elI; = :.ITq and 3I; == <P • In this case we will call q a 
dejining operation of the system, 3I; the set of physical 
state s of the system, and 0I; the set of physical observ-
abIes of the system. 0 

The qualification "phYSical" in D-5 has been put in 
for later convenience, when it will be necessary to dis
tinguish the physically constructed elements of a system 
from purely mathematically constructed elements in 
some particular mathematical model of the system. 
When this distinction is not necessary we will simply 
refer to the observables and states of the system. We 
can now state three theorems valid for arbitrary phys
ical systems; these simply summarize Mackey's axioms 
I -III. From our definitions it should be obvious that 
only T-S needs any explicit verification. 

T-6. "1(0', ¢) E tJI; X SI;' 1fa*¢ is a probability measure. 
D 

T-7. "1(0', (3) E tJE X tJI;' [0' == f3] -.. [1fa*<I> = 1f1J*<I>' V¢ E SI;); 

Y(CP,tJ;)3I; x Sp[¢=tJ;]= [1ra*<I> = 1f a .. "'. "10' E tJd. 0 

T-S. V(O',j) E tJl:; X ~, there exists a unique element 
j(O') E 0I; such that 1T/(a)u(B) = 1Ia.*<I>U-1(B), V(CP,B) E 
3I; x CB. 0 

Proof of T-S. From a simple application of A-4 and T-4 
it is clear that there exist elements of tJ I; which satisfy 
the conditions of T-S. It then follows immediately from 
T-7 that there can be only one such element for any pair 
(O',f). QED 

The interpretations of the elements introduced in the 
last three definitions can be given quite simply. The de
fining operation of a system is the means of verifying the 
actual fulfilment of the necessary and sufficient condi
tions for the presence of the system; this requires of 
course that we have a good operational definition of the 
system, i.e., that we know precisely under what experi
mental conditions we will say that the system has been 
actualized. Conceptually the defining operation is simple, 
but in practice it may be a conjunction of a number of 
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subsidiary questioning operations. For example, in the 
case of some macroscopic systems it may involve only 
checking to see whether the right experimental arrange
ment is present and in working condition, while for 
microscopic systems it will generally involve also 
detailed questioning operations regarding the proper 
values of mass, charge, spin, etc. In any case, we say a 
certain system '6 is present if and only if we are in 
circumstances such that the defining operation q has the 
answer "yes" with certainty. The elements of the set 
iI> are then precisely those preparatory operations ¢ 
wfhch produce various examples of circumstances such 
that the questioning operation q has 1 for its only poss
ible result (i.e., such that q*¢ EO :D), and so they are all 
the operations which render the !?ystem present in its 
various possible configurations or states; the set ::n 
then consists of all those numerical operations et which 
result in measurements et*¢ when they are performed 
after any of the preparatory operations ¢ EO iI> q' 

Several remarks are in order at this point. We have 
purposely omitted any requirement to the effect that a 
measurement et *¢ should itself correspond to a state of 
the system being considered (Le., we do not impose the 
condition q*et*¢ EO :D, for q the defining operation of a 
system and et EO ::n , ¢ EO iI> -in fact we do not even re
quire that the opetation q~et*¢ be possible); this is re
alistic since many actual measurements, for example 
those involving high-energy scattering processes, may 
destroy the initial system under study, so that the sys
tem must be prepared again if another measurement is 
to be performed on it. We also avoid any assumption 
regarding the "collapse of the state" after measure-
ment, along with the difficulties and confusions to which 
tllis assumption can lead. 9 In this same line of thought, 
indeterminacy principles have a very precise interpre
tation in the present context and will arise in the stan
dard way from any quantum mechanical model resulting 
from our structure. Such a prinCiple, holding, say, be
tween two observables 0' and p on a given system 6, 
makes no statement about the possibility or impossibil
ity of the operations et *{3 or {3*et. Instead, the prinCiple 
states a relationship between measurements of the form 
et*!t0r {3*¢, implying that there exists no preparation ¢ 
of L.; which will make the repeated performances of both 
measurements determinate, although such determinacy 
can be had for either one or the other of the two measure
ments, provided we use a suitably chosen state (an 
"eigenpreparation" for one of the observables) and are 
willing to suffer indeterminacy in the results of the other 
measurement. Finally, it should be noted that the defi
nition we have given of a system is general enough to 
include all the physical models so far proposed, whether 
for classical or quantum systems; there seems to be no 
reason to believe that it cannot be applied to more gen
eral systems as long as they are subject to quantitative 
measurement (e.g., biological systems, psychological 
systems, sociological systems), but we will use the terms 
"system" and "physical system" in reference to the 
structure defined above. 

We now formally incorporate into our structure 
Mackey's axioms IV -VI (and the relevant definitions) as 
our axioms 5-7, with only the required notational 
changes. 10 Consequently, all of the theorems and results 
which depend only on Mackey's first six axioms will be 
available in our structure. 

A-5. Let ¢j, i == 1,2, ... , be a finite or infinite sequence 
of states of a system 6, and let ;\ j be a corresponding 
sequence of real num1::ers such that 0 < ;\ j :s: 1 and ~j;\ j 
== 1. Then there exists a ¢ E Sr; such that, VO' E (5 r; 
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11 a* ¢ == LtjAj11 a*¢j' We will denote this state by the 
symboI6;A;¢j' 0 

D-7. For any system 0 let S£, be the set of all states 
¢ which are convex linear combinations L,jA j¢ of states 
¢j,r. ¢, and let S~ be the set Sr; - S£'. 0 

We will call the states in Sr mixed states of the sys
tem and those in S{ pure states. Obviously, the motiva
tion behind A -5 is the introduction of statistical en
sembles of states into our structure. 

With our next definition we introduce the important 
set ~r; of questions on a system 6. 

D-8. For any system Lt, let ~r; be the subset of obser
abIes defined by ~r; == {et EO 0 r;: 11 a*<I> ({O, I}) == 1, '<I cp EO Sr;}. 

o 
That ~r; is not empty can be seen from the same 

reasoning that led to T-5: for any 0' EO 0r; the observ
abIes Q B( et) corresponding to the characteristic func
tions of the sets B EO ill are elements of ~r;. In par
ticular, the defining operation q of 6 corresponds to a 
unique question in ~r; which we will general symbolize 
as "I" since it is clearly also the Borel function Q R == 1 
applied to any observable et E 0r;. A question of the 
form Q JO') has an obvious interpretation as the observ
able which yields the result "I" whenever a performance 
of the observable et yields a result in the set B, and 
yields the result "0" otherwise; in this sense it is the 
yes-no question: "Did the measurement of et lead to a 
result in B?" Now for arbitrary q EO ~r; the Borel func
tion n: r ~ 1 - r, rEO R, defines by T-8 a new observable 
n(q), which we will also write as 1 - q; this observable 
is clearly the question whose answer is "yes" if and 
only if the answer to q is "no," and for q == QB(et),n(q) 
corresponds to the question "Did the performance of 0' 

lead to a result in R - B?" 

There is a natural partial ordering on the set ~r;' but 
to specify this we need the definition of the mean value 
of an observable on a state: 

D-9. Let m ¢(O') == iR rd11 a*¢(r) for all pairs (0', ¢) E 

0r; x S r; such that the integral on the right exists. 0 

For a question q E ~r; the mean value always exists and 
is easily evaluated since for any ¢ EO 3r; we have 

m ¢(q) == O· 11 q *¢({O}) + 1· 11 q *¢({I}) == 11q *<I>({I}) 

and, since 11 q*¢({O}) + 11q *¢({I}) == 11 q *¢({O, I}) == 1, it can 
be seen that the set of mean values m ¢(q), ¢ E 3D com
pletely characterizes the question q. We now define the 
partial ordering on ~r; by: 

D-I0. '<Iq, q'E~l,' [q :s: q']-==>[m ¢(q) :s: m ¢(q'), '<I ¢ EO Sr;]. 
o 

We also introduce Mackey's useful relationship of dis
jointness between questions: 

D-ll. '<Iq, q' E ~l:> [q ..L q'] = [q :s: n(q')]. 0 11 

We obviously have q ..L n(q), '<Iq E ~r;, and m cp(q) + m'i> 
(n(q» == 1, '<I ¢ E Sr;; we also have for all diSJoint pairs 
q, q', m ¢(q) + m (q')?:: 1, '<I ¢ E Sr;. This suggests the 
possibility of defining an operation of summation for 
arbitrary families q j of pairwise disjoint questions, but 
this notion will only be meaningful if L,jm ¢ (q i) :s: 1, '<I ¢ 
EO Sr;, and pairwise disjointness alone is not sufficient to 
guarantee this latter inequality. Nevertheless, we will 
include Mackey's axiom Vas our 
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A-6. Let q t be any pairwise disjoint family of questions 
on a physical system 6. Then there exists in ~E a 
question !Z..(in symbols, q = 6jqj) such that, "t¢ ESE' 
m q,(q) ::: LJjmq,(qj). 0 

This axiom obviously needs a clear motivation and inter
pretation. We assume it primarily because in the most 
important cases-i.e., when qj::: QB.(O') for some ob
servable 0' and some pairwise disjdint sequence B i of 
Borel sets-it is eVidently true and we have a precise 
physical prescription for asking the question q on any 
state ¢: we simply perform 0' on ¢ and see if the re
sulting number lies in the Borel set U;B j; if so we have 
gotten the answer 1 for q; if not we have gotten the an
swer O. The remainder of the motivation for A-6 lies in 
a closer look at the partial ordering in terms of which 
disjointness is defined. Basically, A -6 expresses our 
intention of interpreting q :s q' physically as implying 
more than the simple probabilistic relation (D-10) which 
defines it mathematically: we interpret q :s q' tomean 
that q' depends intrinsically on q in such a way that q is 
a partial measurement of q' in the sense that any indi
vidual performance of q which yields the result 1 can be 
taken as a Simultaneous performance of q' yielding the 
result 1. A careful working out of the implications of 
this interpretation shows that A -6 is fundamentally an 
assumption concernil'l?; the number of states in a phys
ical system-we intend to include enough states in our 
structure (even if they have to be purely mathematically 
constructed states and not physical states) so that if q' 
does not depend on q in the way we have specified there 
will exist some state ¢ for the system such that m q,(q') 
< m q,(q). With this interpretation we also see that q .1 q' 
means that q and q' cannot have simultaneous "yes" 
answers, and that a question of the form 6 j q i may be 
interpreted physically as the question whose answer is 
"yes" if and only if at least (and therefore at most) one 
of the questions qi has the answer ''yes.'' We note that, 
in virtue of T-7, the summations introduced by A-6 are 
uniquely defined questions. 

In terms of disjointness and disjoint sums we can now 
define the notion of a question-valued measure which will 
be needed for our next axiom. 

D-12. For a physical system ~,we will call a mapping 
Q : <B --) ~ E: B -> Q B a question -valued measure if and 
only if: 

(1) [B n B':::~] => [QB.l QB']; 

(2) For any sequence B ~f pairwise disjoint sets, 
[B::: UiBt1=[QB='L..jQB.]; • 

(3) Q R::: 1 and Qo ::: O. 

In condition (3) above, the questions designated 1 and 0 
are, of course, to be interpreted as the corresponding 
constant Borel functions. Now for any observable 0' it 
is clear that the correspondence B --) Q B(O') is a question
valued measure, and conversely it is easily seen that the 
question-valued measures have all the formal properties 
of observables. This motivates our axiom. 

A-7. For any question-valued measure Q on a system 
6 there exists an observable 0' such that QB = Qri.O'), 
VB E <B. 0 

As Mackey Shows,12 the correspondence between 
observables and question-valued measures on a system 
is bijective, and each state ¢ E Sf:. is completely speci
fied by the function mq,: ~E -> [0, 1J: q ->m (q). These 
functions have the following properties: (a) if Q.i is any 
pairwise disjoint family of questions, then m i~£iqi) ::: 
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Ejmq,(qi); (b) 0 :s mq,(q) :s 1, "tq E ~E;(C) mq,(O) = 0 and 
mq, (1) = 1. Such a mapping m satisfying (a), (b), and (c) 
on an orthocomplemented partially ordered set ~ (on ~E 
the correspondence q --) n(q) defines the orthocomple
mentation) is called a probability measure on ~. Since, 
by A-5, the full set of states is specified by the subset 
S~ of pure states, we see that a physical system 6 is 
completely equivalent to the triplet {~u st, m}, where m 
is the mean value function restricted to ~ E X ~ -the full 
set of observables is defined by A-7 as the set of ques
tion-valued measures in ~E and the probability mapping 
'IT is recovered from the prescription 'IT ,,*q,(B) = m q,(QB 
(0')), where B -> QB,{O') is the question corresponding to 0'. 
It will often be convenient to consider a physical system 
~ simply to be the corresponding structure {~E' ~,m}. 

Now any mathematical model of a physical system has 
as its main purpose the computation of the elements con
tained in the set of numbers defined by: 

D-13. For a physical system ~ let DE (the data set of 
~) be given by DE == {mq,(q): ¢ E ~,q E ~E}. [] 

It is obvious, however, that for such a computation to 
take place we must complete our physical structure, by 
the addition of further mathematically defined elements, 
into a mathematical structure provided with a compu
tational rule for deriving the numbers in DE. Even 
without such a complete mathematical structure, though, 
we can already construct a number of useful definitions. 
For example, in analogy with the definition of the numer
ical set of an operation (D-2) we can define the spectrum 
a(O') of an observable 0' on a system E: let Z(O') be the 
null set of 0' [i.e., the union of all open intervals I in R 
such that 'IT elM (I) ::: 0 for all states_ ct> 1 and let a( 0') = R -
Z(O'); the point spectrum will then be the subset a R(O') 
= {r E R: Q{r} (0') .,£ OJ. We have then as an immediate 
result the fact that the spectrum of any observable is 
alwavs a closed nonempty subset of R. If we let the 
norm /I 0' II of an observable be the least number a E 

[0, <Xl] such that Irl:s a, Vr E a(O') , and that an observ
able is bounded if it has a finite norm, then it is easy to 
show that the mean value of a bounded observable is 
always finite on any state. We can say two observables 
0' and 0" are compatible or simultaneously observable 
(in symbols, 0' ~ 0") if there exists an observable f3 
and two Borel functions f and f' such that 0' ::: f(f3) and 
0" ::: f'(f3); for questions q and q' this obviously implies 
that q ~ q' if and only if there exists an observable f3 
and two Borel sets Band B' such that q::: QB(f3) and q' 
= Q~(f3).13 This notion should be distinguished carefully 
from a similar relationship, that of simultaneous deter
minability, which can be said to hold between questions 
q and q' if there exists a state ¢ such that both q*¢ and 
q'*¢ are determinations. 

It is evident that these definitions have been motivated 
by the usual formulation of the quantum mechanical 
model of a physical system in terms of the mathematics 
of Hilbert space, although we have formally used only 
probability theory and our axioms; this can be under
stood as an indication that the quantum mechanical 
model for a physical system is a very natural mathe
matical completion of a physical system. In a succeed
ing paper we will investigate this possibility. 14 
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ICf. for example, C. Piron, Helv. Phys. Acta, 37,439 (1964); M. Guenin. 
J. Math. Phys. 7, 271 (1966). This latter paper contains a rather extensive 
set of references to previous work in axiomatic quantum theory. The 
paper most similar in spirit to the present one is the work of S. Gudder, 
J. Math. Phys. 8, 1848 (1967); however, we do not make any assumptions 
concerning the existence of coordinate and momentum observables. If 
Gudder's axioms for these observables are added to the present set of 
axioms then his results will be valid in the resulting model. In the paper 
following this one we investigate the relationship of a physical system to 
the quantum mechanical model without these additional assumptions. 
As Gudder points out, the basic difficulty with previous axiomatic 
theories is that they assume an orthocomplemented atomic lattice 
structure for the set of physical q u.estions, while it is not at all physically 
evident that the set of questions forms any sort of lattice, much less an 
atomic one. The axiomatic structure of the present paper leaves open the 
possibility that a physical system may well be described by such a lattice 
theoretical model, but it also leaves open the possibility that a physical 
system may be better describable in terms of quite different mathe
matical structures. 

2G. W. Mackey, Mathematical Foundations of Quantum Mechanics 
(Benjamin, New York, 1963). 

'Mackey's axioms III-VI are essentially our axioms 4-7. In particular, we 
do not use Mackey's axioms VII and VIII (the specifically quantum 
mechanical axioms). 

4As in all statements of the motivation behind an axiomatic system, we 
have to avoid pushing our description of physical operations too far. An 
analogous situation arises in the case of axiomatic geometries versus 
physical reality-the formal elements "point", "line", "circle" are 
meaningful in their axiomatic context, but when we try to describe 
rigorously the physical notions from which they arose we meet in
numerable difficulties. The best we can hope for is that our formal 
system mirrors enough of reality to make it useful. 

sFor those readers unfamiliar with the notions of Borel sets and Borel 
functions, it is sufficient to say that these classes contain all the sets and 
functions that physics will need, excluding only some rather "weird" 
mathematically constructable sets and functions. 

·OUf intuitive description of operations breaks down somewhat at this 
point (in the sense of footnote 4), since the "artificial" operations intro
duced by A-I for mathematical convenience do not have any unique sets 
of operational prescriptions. 
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'Considering the converse statement "If an operation ¢ does not satisfy 
A-3, then ¢ is not a measurement", demonstrates the true nature of A-3 
as a defining specification of the restricted class of objects we are going 
to call "measurements." This class is more restricted than the ordinary 
usage of the term, which would roughly correspond to "A measurement 
is any operation which results in a number every time it is performed." 
This broader class of "numerical operations" will be defined in the 
following paragraph and used in the construction of systems, observables 
and states, but the strict notion of measurement as given in the text will 
remain basic to our considerations since it is needed even to define rigor
ously the notion of a numerical operation. 

"Reference 2, p. 63. 
'For some of these difficulties, cf. H. Margenau, Phil. Sci. 30, I, 138 (1963). 
IOReference 2, pp. 63-66. We generalize Macke'y's axiom V slightly so 

that it does not assume implicitly that only a countable set of questions 
can be pairwise disjoint; since we do not use Mackey's Hilbert space 
axioms or theorems, this modification will have no effect on our 
present considerations. When we examine the relationship of the present 
structure to quantum mechanical models, the modification will allow 
for the possibility that a quantum mechanical model for a given system 
may have to be realized in terms of nonseparable Hilbert space 
structures. It will be seen then that the clarification of the physical 
nature of a state given in this paper will result in a clarification of the 
physical significance of the separability requirement ordinarily placed 
on quantum mechanical models. 

11 Reference 2, p. 64. 
12Reference 2, pp. 66, 67. Our axiom A-6, of course, implies that any 

given state ¢ has only a countable set of nonzero mean values with 
respect to any particular pairwise disjoint family of questions; this is not 
the same as requiring that any such family of questions be countable. 

J3We chose this definition of simultaneous observabiJity because it or its 
equivalent forms (cf. Ref. 2, pp. 70, 71, and the note on p. 137) seem 
to be the only known ways to avoid the obscurity inherent in the usual 
physical descriptions of the notion-in particular, the definition given 
above does not conflict with relativistic principles, since it does not 
refer to any form of temporal simultaneity. 

14For papers related to this paper, by Gudder, Pool, and Mielnik, cf. Trans. 
Am. Math. Soc. 119, 428 (1965); Pac. J. Math. 19, 81 (1966); Comm. 
Math. Phys. 9,118 (1968); Comm. Math. Phys. 9,55 (1968); Comm. 
Math. Phys. IS, 1 (1969). 
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The connected symmetry group SU(2, 2) of twistor space ('t), a four-dimensional complex manifold 
with metric 

ds r '== dXodX'+ dX 'dFi + dX'dXJ + dX 3dX', 

and the connected symmetry group 0 0(2,4) of conformal space (e), a six-dimensional real 
manifold with metric 

ds <e' == (dX 0)' - (dX ')' - (dX ')' _ (dX 3)' - (dX 4)' + (dX 5)', 

are 4:1 and 2:1 homomorphic, respectively, to the restricted conformal group in compactified 
Minkowski space ('JIt): We obtain explicit realizations for these homomorphisms and explore the 
invariant geometrical relationships they imply between cr, e, and 'JIt. As an application of the twistor 
formalism, we show that every continuous conformal transformation has a unique decomposition as 
the product of a Lorentz transformation, a translation, an acceleration, a dilation, and one of four 
special conformal transformations. 

I. INTRODUCTION 

Twistors may briefly be characterized as the tensors 
of the group SU(2, 2). Now SU(2, 2) is 2: 1 homomorphic 
to °0 (2,4), the connected component of 0(2,4), and °0 (2,4) in turn is 2: 1 homomorphi.c to ~, the .1?-para
meter restricted conformal group In compactlfled 
Minkowski space (~. Consequently twistors of rank 
one form a basis for a fourfold representation of [ 
(see Fig. 1). More generally, any finite-dimensional 
representation of [ is equivalent to a direct sum of 
twistor representations. Thus we can think of twistors 
as the spinor s appropriate to 'Jft. 1,2 They provide, as 
Penrose3A has shown, a natural means for formulating 
conformally invariant relationships in 'JIt. 

SU(2,2) is the connected component of the symmetry 
group of twistor space ('I), a four-dimensional complex 
manifold with metric 

ds-l == dxod)(2 + dX2dXo + dX1dX3 + dX3dXl. 

°0 (2,4) is the connected component of the symmetry 
group of conformal space (e), a six-dimensional real 
manifold with metric 

The homomorphisms of figure one link the abstract 
spaces 'I and e with the space 'JIt of direct physical 
interest. It is the purpose of this paper to derive ex
pliCit formulas for these homomorphisms and to exa
mine their implications. 

We begin in Sec. II with a study of conformal trans
formations in Minkowski space. The construction of 
conformal space leads naturally to an explicit realiza
tion of the homomorphism between 0(2,4) and the con
formal group, which is also available elsewhere. 5 •6 

In Sec. III, after a brief review of twistor algebra, we 
buUd up the theory necessary to work out the homo
morphism between SU(2, 2) and °0(2,4) in a fully co
variant manner. In the course of this work there 
emerges a general formula for arbitrary products of 
Dirac y matrices. This formula is the conformally co
variant version of the standard rules for multiplication 
of y matrices given by Macfarlane.7 With the aid of 
these preliminary results we obtain the explicit homo
morphism between SU(2, 2) and °0(2,4). Finally, in 

Sec. IV, we complete the circle of relationships indicated 
in Fig. 1 by working out the homomorphism between 
SU(2 2) and [. As expected, we get the usual homo
mor~hism between SL(2, C) and the restricted Lorentz 
group by speCializing our results appropriately .. Sec. V 
contains a few simple applications of the formahsm of 
Secs. II -IV. Working in <f, we decompose an arbitrary 
continuous conformal transformatio"l into the product of 
a Lorentz transformation, a translation, an acceleration, 
a dilation and one of four special conformal transforma
tions. W~ also point out several of the conformally in
variant geometrical relationships between 'I, e, and 'JIt 
which our work implies. We conclude in Sec. VI with a 
few remarks on the significance of the abstract spaces 
'I and e for physics. 

In the course of the work outlined above it will be 
necessary to introduce four distinct kinds of indices: 
conformal space indices (range: 0, ... ,5), spinor in
dices (range: 0,1), twistor indices (range: 0, ... , 3), and 
Minkowski space indices (range: 0, ... ,3). In order to 
avoid confusion between different types of indices, we 
adopt the following conventions. Upper case Latin in
dices attached to upper case symbols, e.g., XA, lA, 

represent conformal space indices; upper case Latin 
indices attached to lower case symbols, e.g., ~A, X AA', 

represent spinor indices. Greek indices attached to 
upper case symbols are twistor indices, e.g., La, Xa, 
",A • and Greek indices attached to lower case symbols DaB' 
are Minkowski space indices, e.g., x~, r:A'. The only 
exceptions to these rules will be the umversal use of (5 

for the Kronecker delta and E for the Levi-Civita alter
nating tensor, where no confusion as to the nature of 
the indices is likely to occur. 

II. 0(2,4) AND THE CONFORMAL GROUP 

Conformal transformations in Minkowski space pre
serve the form of the metric 

Fig. 1. Homomorphisms between SU(2, 2), 0 0 (2,4), and cr. 
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where ds1 is the Minkowski metric 

and a(x) is some unspecified conformal factor. The in
variant metric ds2 may be written in the form 

aKA aKA 
ds 2 == -- -- dxl'dx V (2) 

ax!' ex V 

where 

KA(X) == a(x/xa ~ [1 + X2] .l.. [1 _ x2]) 
\ '12 2 '12 2' 

KA == lI. AB KB, 

lI.AB == diag(+ 1, - 1, - 1, - 1, - 1, + 1). 

By (3), KA(x) is a null vector in e: 

As xl' varies, KA(X) sweeps out a four-dimensional 
submanifold of e with metric ds2 related to the Min
kowski space metric ds1 by the conformal factor 0 2 • 

(3) 

If we allow arbitrary 0, (3) maps pOints of Minkowski 
space (M) into pairs of null directions (corresponding to 
0> 0 or 0 < 0) in e. 

With the aid of (3) we can work out the explicit con
ection between symmetry transformations in e and con
formal transformations in M. The linear transformation 

XA' = CABXB, 

CAR CB SAAB = A RS 

which leaves invariant the conformal space metric (1), 
induces a transformation in Minkowski space via 

KA'(X) == KA(X') = CABKB(X). 

From (2), 

dS'2 = o'2ds'J. = a2dst == ds2 

so that 

dS'J = n2ds1, 

where 

0' = n-1a. 

(4) 

Consequently (4) associates with every element of 
0(2,4) a conformal transformation in Minkowski space. 
For those C E. 0(2,4) of the form C == exp {r}, we can 
write 

Here AR,BR, and rRS are projected forms of conformal 
space tensors, 

and 

AR == (aP, 0, 0), 

BR == (bP, 0, 0), 

[

yp a 0 OJ 
fRs == 0 0 0 

o 0 0 

OR == (1/12)(0,0,0,0,1,1), 

JR == (1/12)(0,0,0,0, - 1,1). 
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Now the (restricted) Lorentz, translation, acceleration, 
and dilation subgroups of @: are characterized in e as 
follows: 

Lorentz transformations: A R = fj R = W = 0 => 

x~' == ~l'vxlJ, 

~I'v == (expy)/lv. 

Translations: rRS == .Ii R == W == 0 => 

xl" == xl-' + bl'. 

Accelerations: r RS = fj R == W = 0 => 

xll' = n[xll - all (x2/2)], 

n =(1 - a· x + a2x: 2/4)-1. 

Dilations: rRS = AR == fjR = 0 => 

x p' = nxP, 

n == e W
• 

There are in fact two matrices C± == ± C E. 0(2,4) for 
every conformal transformation in M, since the two null 
directions ± KA(X) in e correspond to the same point 
xl' in M. That is, 0(2, 4) is 2: 1 homomorphic to the con
formal group. This homomorphism has also been ob
tained by Grgin. 5 

While every point in M defines a pair of null direc
tions in e via (3), the converse is not true. There exist 
some null directions in e for which there are no cor
responding points in M, namely those of the form 

NA ==(aa -~ ~) , [2'..f2' 

with 
a2 == a~aP == 0 =0> N2 == N A NA == O. 

To give these null directions a Minkowski space in
terpretation, we associate them with sets of points xl' 
which satisfy 

NAKA(X) = 0 => apxll + b = O. 

For a P '" 0, a2 == 0, this is the equation of a null hyper
plane in M. In order to complete the conformally in
variant correspondence of (3) between e and M, we must 
add to M points at infinity identified with the N A, so that 
all null directions in ~ have an equivalent interpreta
tion. That is, we must add to M a point at infinity for 
each null hyperplane of M (the point where the parallel 
null generators of the hyperplane intersect) plus one 
additional point J at infinity for the null direction N A = 
bJA, with a ex = 0 (the point where the null lines at inii
nity intersect). The result of this procedure is the con
formal compactification ~ of M. The behavior of OA and 
JA under conformal transformations reflects the trans
formation properties of the origin and timelike (space
like) infinity, the points of ~ to which, by (3), they 
correspond: 

Lorentz 
Transform
ations 

OR' = OR 

JR' == JR 

Translations 

OR' = OR + fjR 

- i jj2JR 

Accelerations Dilations 

OR' = OR oR! == n-10R 

JR' == JR JR' == JR + A R Jf( = nJR 

- ~ A20R 
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III. SU(2,2) AND 00(2,4) 

Having worked out explicitly the relationship between 
0(2,4) and the conformal group in (compactified) Min
kowski space, we move on to consider the relationship 
between SU(2, 2) and °0(2,4). For this purpose we must 
fir st review a few pertinent details of twistor algebra. 
We shall employ the notation of Ref. 3 as far as possible. 

Twistors Za of valence (a) form a basis for a reali
zation of SlJ(2, 2) in terms of 4 x 4 complex matrices 
TaB: 

za'=TaBZB, 

Ta -TB A -A 
P 0 aB - po' 

detTaB = 1, 

where 

[

0 0 

o 0 
A =;0 

aB - 1 0 

o 1 

1 OJ o 1 

o 0 

o 0 

=;. Signature (AaB) = (+,+,-,-). 

The transformation law for more general contravariant 
twistors is 

In order to produce an invariant scalar product, we 
lower twistor indices as follows: 

Z = A A A ZIJU ... P =- Z' zaB •• • K' aB ... K - a~ Bv'" KP aB ... K 

=ZaB ... KzaB ... K 

We can also use the four-index permutation symbol 
E~VPO to raise and lower antisymmetric index pairs, in 
this case without complex conjugation: 

We say that an antisymmetric twistor zaB is real if 
zaB = ZaB. This rather eccentric definition of reality 
has an invariant meaning in 1', 

zaB = zaB =ZaB' = ZaB', 

which the ordinary definition of reality lacks. 

To obtain a 2: 1 mapping of SU(2, 2) onto °0(2,4), we 
must associate rank-one conformal space vectors ZA, 
whose transformation law is linear in CAB' with rank 
two twistors zaB, whose transformation law is bilinear 
in TaB' so that ± Tal'> «->CAB• 8 The only rank two twis
tors uniquely determined by six independent real para
meters-the number supplied by the ZA-are real anti
symmetriC twistors za8 = zaB = - Z8 a. Accordingly 
we assume a one-to-one correspondence between Z A 

and Zcx.6, 

ZA= 6.:a ZCl.B, (5) 

which preserves the scalar product 

Z2 = ZAz A = ZCl.BZ a8' 

One can easily show that these assumptions require 

(i) 6~B = - 6t", 

(ii) ~~B = 6~B' 
(iii) 6~B 6118 = o~, 
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(iv) 6~8 ~~o = ~(o~og - o§ o~). 

We shall take (i)-(iv) as the defining properties of the 
6~B' These quantities, which provide the basiC link 
between '£ and e, are analogs of the Pauli matrices T:B', which relate spinors to Minkowski space tensors. 

If we now perform a coordinate transformation in 1', 

ZCl.8' = Ta T8 'Zpo = Ta TB "'po ZA pOp oD A , 
and set 

ZCl.B' = 6~BZA' = 6~B CABZB, 

we obtain 

CAB == ~1.B 6 EJ1 TOpTB o. (6) 

This gives the conformal space transformation CAB 
associated with the twistor space transformations T f8 
= ± TaB' One can check explicitly that, given any TaB E 

SU(2, 2) and any set of ~1.a satisfying (i)-(iv), the mat
rix CAB constructed according to the prescription (6) 
belongs to °0(2,4). Furthermore, 

C(T 1)C(T2) == C(T 1 T 2)· 

Thus we have indeed secured the required homo
morphism. 

It is useful to extract from (6) an expression for Tin 
terms of C. As a first step in this direction, we solve 
(6) for T in the case of infinitesimal transformations. 
In this case the nonlinearity of (6) presents no difficul
ties. If we write 

TaB = o~ - iEGaB, 

CA B = o~ + Er A
B, 

with GaB tracefree and Hermitiall (in the '['-invariant 
sense) and r AB antisymmetric, 

Gall =GBa, 

Gaa == 0, 

r AB = _ rBA, 

we have 

Ga - i '" arAB Il - 2 DAB B , 

r AB = i6ABaB GB a' 

where 

~ABaB = 2[6}'XL:B}'B-iAABOg]. 

(7) 

(8) 

(9) 

The L:AB"'s possess a number of interesting properties 
of their ow~ which follow directly from properties (i)
(iv) of the L.;~ll: 

(I) • 

(II) • 

(III) . 

(IV). 

(V). 
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In (Ill)-(V) wehave employed matrix notation. The 
~AB' with the twistor indices suppressed, represent 
4 x 4 tracefree Hermitian matrices, and the ~all , with 
the conformal space indices suppressed, represent 
6 x 6 antisymmetric matrices. Without loss of gener
ality we may write 

2:)AB = - f [~;~ ~P ::J (10) 

'fY~ 'fY5 oj. 
By (1), (II), and (V) the Y~' Y5' {T~, and (Til" which appear 
above must have all the defining properties of Dirac 
matrices. In particular, 

i 
YIlY" + YVYI' = 21]1'11' all = 2 [Y~ Y5]' 

Y5 = YOY1Y2Y3' aJ1!l = f [Y fL , Yvl· 

Multiplication rules for more complicated products of Y 
matrices, such as those given by Macfarlane,7 may be 
obtained either directly from (V) or by iteration. 

The ambiguity of sign above is connected with the fact 
that, given an irreducible representation of SU(2. 2) bv 
matrices Tall' the matrices Tall constitute a second irre
ducible representation of SU(2, 2) unitarily inequivalent 
to the first. According to (7), the second representation 
is obtained from the first by replacing LAB with ~. 
The 2:)AB satisfy the same fundamental relations (1) -(V) 

as the ~ AB' except that the sign of the last term in (V) is 
reversed. As derived, (V) allows for either representation 
by leaving the sign of that term arbitrary. Of course, no 
ambiguity occurs in the commutation relations (Ill) and 
(IV), as these reflect the structure of the groups them
selves, without reference to their representations. 

By (6) and (9) we can write for C( 1') 
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CAB(T) = } Tr(LAcT) TrCBCBT)+ }Tr(~ABT2) 
1 "" 1 - 2 TrT TrCJAB1') + '8 AAB[(TrT)2 - 2TrT2J. 

We now employ a covariant technique due to Macfar
lane,9 modified to apply in the present circumstances, to 
solve (6)for T. We first require the orthogonality relation 

2:)ABall 2:)ABP" = ~ ogo~ - 2og-og, 

which follows from (i) -(iv) and (9). This result, when 
multiplied on both sides by TI' ct Til p gives, in matrix 
notation, 

2T(Tr'rl) ::=} - T2:)AB T-l2:)AB' 

where 

(T-l)all == Tall' 

We may evaluate the last term on the right by means of 
(6): 

T2:)ABT-l::::: CRACSBL,RS' 

With the help of (V) we find 

2T(TrT-l) = ~ + } (TrC)2 -}TrC2 + (TrC) 

x C "AB - C2 "AB '+' i c ABLi ABLi 4 'ABCDEF 

X CABC CD2:)EF • (11) 

Now by the unitarity of T, 

TrT-l = TrT. 

Taking the trace of (11) and inserting (12) we get 

TrT = eie[2[} + } (TrC)2 -} TrC2], 

which implies 

(12) 

T(± C) = e,a AB AB ABcnEF W 
. ~ 2 + (TrC)2 - TrC2 + 4(TrC)C 2:)AB - 4C2 2:)AB Of if: CABCCD"EF~ 

4[2 [2 + (TrC)2 - TrC2]1/2 • 

() is determined by the condition det T = 1 to be 

1f 31f 
():: 0'2' 1f'2 • 

Thus if we set 

2 + (TrC)2 - TrC2 + 4(TrC)C AB2:)AB - 4C~2:)AB 'f if: ABCDEFCABCcnI:;EF 
T(C)=--~~--------~~~~--~~~--~~~--~~ 

4[2 [2 + (TrC)2 - TrC2]1/2 

we may write 

T.(C) == ± T(C), 

T±{- C) == ± iT(C). 

(14) 

(15) 

Equations (13) and (14) establish the 2: 1 homomorphism 
between SU(2, 2) and °0(2,4); while (13)-(15), coupled 
with the results of Sec. n, give the 4: 1 homomorphism 
between SU(2, 2) and ~. [The general formula (13) gives 
an indeterminate result when the denominator vanishes. 
In practice, however, this case presents no difficulty, 
since for those C E °0 (2,4) with 2 + (TrC)2 - TrC2 = 
0, we can define T( C) by continuity.] 

IV. SU(2,2) AND ~ 

We now study the 4: 1 homomorphism between SU(2, 2) 
and ([ in greater detail. In doing so it will be convenient 
to introduce a specific set of 2:)~/:l ' namely 
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2:)~6 == ; [0 A' -T" ABJ 
"U pI' B 0 

"4 =.!.. bAB 
0 J DaB -- 2 o - fA'B' ' 

(M = 11), 

"5 - 1 Liall = 2 

Here the T ~ are the ordinary 2 x 2 Pauli matrices, 

and 

T == _~ r1 01 
o [2 Lo d' 

T2 ==~, L
o -iJ 

[2 i ° 

1 ro 1J 
Tl=[2L10' 

(13) 
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-- -;;:cJY 
PIlA'B = T /lAB' = E ACE B'D,T 11 • 

When inserted into (9) and (10), (16) implies a particular 
representation for the Dirac y matrices: 

Yl' = -!2 [0 T~J 
PIlAB 0 
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For simplicity we have chosen the top sign in (V). With 
these conventions, we list below the twistor space trans
formations which correspond to the Lorentz, translation, 
acceleration, and dilation subgroups of [ . 

Lorentz Transformations: 

2(Trt + 1) + !..(Trt)2 -!..Trt2 - i(Trt + 2)~ al'V + i~2 al'V -!..E ~llv~poy5 
T( C) = s 2 s 2 s S /lV /lV 2 /lvpa 

1 1 
4[2(Tr~ + 1) + 2(Tr~)2 - 2Tr~2F/2 

T(C) = L
~AB 0] 

- B' , o -~A' 
(17) 

~ TIlAC'pV 
A = Ilv C'B 

~ B- [~"s ~K )..T"pBT K p A]1I2 , 

2~ IlVT!lAC'P~'B 

[(Tr~)2 - Tr~2 + 4 + iE"BK)..~"B~K'\p/2 

E. 5L(2, C); 

Translatians: 

(18) 

Accelerations: 

(19) 

Dilations: 

T(C) = cosh ~ - i y 5 sinh~ , 

(20) 

We see that (13) and (14) yield, as a special case, the 
2: 1 homomorphism between elements of 5L(2, C) and 
the restricted Lorentz group.9 This relationship, as 
expressed in (17), is responsible for the existence of a 
spinor decomposition of twistors.3 If we set 

La. == ()I. A, !lA~' 
then 

La'= TW"BLB 

gives the correct transformation law for the spinors 
]I. A and !lA" 

so long as T corresponds to a pure Lorentz transforma
tion. For general T( C), however, this is no longer true, 
and as a result no conformally invariant identification 
of twistors with spinor pairs is possible. 
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I 
V. APPLICATIONS 

As an application of the above work, we show in this 
section that every continuous conformal transformation 
may be represented as the product of a Lorentz trans
formation, a translation, an acceleration, a dilation, and 
one of the following four special conformal transforma
tions: (a) the identity transformation xl" = xl'; (b) the 
inversion 

2xa xQ =: _. - (a:::: 1,2,3); 
Xllxll 

(c), (d) the transformations 

1 - tX/lXI' -{2x 
t' =::- x'=:: 

t ± z t±z 
, 

1 + tX/lXI' - ..f2y 
z:::=+ y' == 

t ± z t±z 

The twistor space analog of this decomposition is, 
for T( C) E. 5U(2, 2), 

T(C) :::= T(L)T(1)T(A)T(D)Ts' 

where T(L), T(T), T(A) , and T(D) have the forms of (17), 
(18), (19),and (20), respectively, and Ts ESU(2,2) (s= 
1,2,3,4) is one of the four transformation matrices 
shown below: 

[

1 0 0 

000 
T -

3 - 0 0 1 

o i 0 

To obtain this decomposition we set 

[

fA tAB'] 1 B 2 
T(C) =:: • 

;A'B ~A,B' 

If D 1(C) == detf(C) "" 0, one can write T(C):::= T(L)T(T) 
T(A) T(D), where 

[ 

~AB(det fl/2 0 ] 

T(L) = 
o - l A,B' (det t)-1/2 ' 

1 1 

(21) 
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T(T) = (22) 

T(A) = (23) 

~deti)01!2 lAB 

T(D) = l (24) 

Now T( C) E. SU(2, 2) implies that D1 = [51' Further
more, if D 1(e) < 0, then D 1(- C) = - D 1(e) > 0 by (15), 
and so we can always arrange for (D 1) 1/2 to be real. 
The unitarity of T then implies that (21), (22), (23), and 
(24) have all the properties of (17), (18), (19), and (20), 
respectively. 

Suppo!,e next that D1 = O. ~en this occurs we con
struct T E. SU(2, 2), with det t '" 0, so that our previous 1 _ 
argument applies with T replaced by T. If D2 == T0 2T1 3 
- T0 3T1 2 '" 0, then 

T2 == TT~i = det f = D2 '" O. 
1 

If D1 = D2 = 0,D3 == TOOTl3 - TloT03 '" 0, then 

T3 == TT-:l- detf= D3 '" O. 
1 

Finally,if Dl, = D2 = D3 = 0, T E. SU(2,2) implies D4 == 
TO l Tl2 - T0 2Tl l ;e 0, and we define 

T == TT-;l => det f = iD4 ;e O. 
4 1 

We now have in general 

Ts = Tl/ = T(L)T(T)T(A)T(D), 

which completes our argument. 

It is also possible, with the aid of the formalism of 
Sec. II - IV, to establish conformally invariant relation
ships between geometric objects in <I, 8, and ~ The 
~~B define one such correspondence between real anti
symmetric twistors ZaB and conformal space vectors 
Z A [cf. (5)]. We can further associate the Z A with sets of 
points x~ in (compactified) Minkowski space which satis
fy the invariant condition 

This equation defines a hypersphere or a hyperplane 
in ~,depending on the particular form of Z A. If Z a6 Z aB 
= ZAz A = 0, the corresponding geometric object in ~ 
is a null cone (a degenerate hyper sphere) . The vertex 
of the cone is the point in ~ associated with the null 
direction Z A via (3). Thus real simple twistors Z ",6 

correspond to null vectors Z A in 8, and these in turn 
define points z ~ in ~ (cf. Ref. 3). 

A similar series of relationships between <I, 8, and 
~ is based on the ~ABaB. Equations (7) and (8) associ
ate tracefree Hermitian twistors G as with real anti-
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symmetric conformal space tensors r AB' Alternately, 
given a twistor La we can construct a real antisym
metric conformal space tensor r AJL) as follows: 

(25) 

From (25), 

r AB( L) r BC( L) = - i L2 6~ (26) 

r[AB(L) r C]JL) = 1~ L2 f ABCDEFrEF(L). (27) 

According to (27), r AB(L) is simple if and only if La is 
null (10). In this case 

r AB(L) = U[A VB]' 

where (26) (with L2 = 0) gives 

U2 = V2 = U· V = O. 

The null dir ections U A and V A in 8 define points u ~ 
and v~ in ~ via (3). The line in ~t joining u~ and v~ is 
null: 

U(u~) . V(v~) = 0 =- (u~ - v~)2 == o. 

Thus we conclude that there is a conformally invariant 
correspondence between null twistors, simple anti
symmetric conformal space tensors satisfying (26) (with 
L2 = 0), and null lines in ~ (cf. Ref. 3). 

VI. CONCLUSION 
Since SU(2, 2) and °0 (2,4) are 4: 1 and 2: 1 homo

morphic to Cl: ,respectively, every conformally invariant 
Minkowski space statement must have conformal space 
and twistor space analogs. In several respects it is 
easier to deal with the conformal space and twistor 
space expressions than with the original Minkowski 
space forms. For one thing, conformal transformations 
are linear transformations in <I and 8, but not in ~. 
In addition, tensor equations in <I and 8 are manifestly 
conformally covariant, while conformal covariance in 
~ is not so obvious. Thus the abstract space <I and 8 
have an important role to play in physics whenever con
formal symmetries occur. 
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On the higher order theories of piezoelectric crystal 
surfaces 

M. Cengiz Dokmeci '* 
Thurston Hall, Cornell University, Ithaca, New York 14850 
(Received 8 August 1972) 

This paper presents a higher order theory of crystal finite surfaces within the frame of the 
three-dimensional theory of linear piezoelectricity. First, by modifying Hamilton's principle, a 
variational theorem is deduced. Then, this theorem together with a method of series expansion is 
employed to establish the theory in a systematic and consistent manner. The theory consists of a 
hierarchy of two-dimensional equations of motion, charge equations of electrostatics, initial and 
boundary conditions, strain-displacement and electric field-electric potential relations, and 
macroscopic constitutive equations. It governs the extensional and flexural as well as torsional 
motions of piezoelectric 'cyrstal shells and plates of uniform thickness. Further, theorems of 
uniqueness in this theory are presented. 

1. INTRODUCTION 

Since the discovery of piezoelectriCity by the Curie 
brothers! in 1880, the theory of piezoelectric crystals 
has been well developed and employed. 2 ,3 With this 
theory, a large class of applications has been solved in 
the literature, in particular, following the Second World 
War. Earlier works have been reviewed in Refs. 2-5. 
Most of them are concerned with the vibrations of thin 
rods and planes for both finite and infinite cases. These 
papers are, in general, restricted to the extremely low
frequency vibrations. For high frequency vibrations of 
piezoelectric crystals, we mention the works of Mindlin 
and his co-workers for finite planes, whose investiga
tions have recently been elaborated by Tiersten6 in a 
comprehensive monograph, and Dokmeci 7 for finite 
bars. However, with the exception of some particular 
problems 8 solved for the case of lower frequency, the 
vibrations of piezo-electric crystal surfaces are not 
touched. 

Our aim in the present work is to establish a linear 
theory of piezoelectric crystal finite surfaces, valid for 
high as well as low frequency vibrations, and to examine 
the uniqueness of its solution. 

In this paper, we set up the theory in the following way. 
In Sec. 2 we summarize the basic equations of piezo
electric crystals necessary for the subsequent develop
ment. Section 3 is devoted to the variational formula
tion of the field equations and the mixed boundary condi
tions. Accordingly, a variational theorem is directly 
deduced from Hamilton's prinCiple as a first step to
ward the theory. Section 4 is concerned with the geo
metry and kinematics of a finite surface with no singu
larities of any type. This surface is considered to des
cribe all types of behavior of thin shells and plates; in 
fact, all the governing equations are expressed in terms 
of the quantities referred to this surface. The displace
ment components and the electric potential are expanded 
in power series. These expansions imply series distri
butions for stresses, displacements and electric field. 
In Sec. 5, by means of the variational theorem together 
with the assumed electric potential and displacement 
field, the higher order field equations and natural bound
ary conditions of piezoelectric crystal shells are con
sistently established in the same spirit as those of Mind
lin and Tiersten. These equations are then supplemented 
with the appropriate initial conditions and macroscopic 
constitutive relations. In Sec. 6, we study the uniqueness 
of solution of the initial mixed boundary value problem 
described by the governing equations of the theory, and 
enumerate the conditions to ensure the uniqueness. 
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Some general conclusions regarding the theory are 
drawn in the last section. 

Notation 

In the subsequent development, we use standard space 
and surface tensors in a Euclidean 3-space of normal 
coordinates. Latin and Greek indices are used respect
ively to deSignate space and surface tensors. According
ly, Latin indices take the values 1,2, 3 and Greek indices 
the values 1,2. Einstein's summation convention is 
implied for all the repeated Latin and Greek indices. A 
comma and a superposed dot denote respectively partial 
differentiation with respect to the indicated variable and 
time. Using respectively the space and surface metriCS, 
a semicolon and a stroke stand for covariant total differ
entiation with respect to the indicated coordinate. Fur
ther, we employ a star to deSignate the prescribed quan
tities and an overbar to refer to the quantities which 
are belong to the midsurface. 

2. GENERAL EQUATIONS FOR THE LINEAR THEORY 
OF PIEZOELECTRICITY 

Referring the motion of nonpolar continuum to a fixed 
system of general curvilinear coordinates, the equations 
of local balance of momenta are 

Tij; i + Ii == pb j in'l) x [to, 00), 

EijkTjk== 0 in 'l) x [to, 00). 

(2.1 ) 

(2.2) 

Here, Tij = Tji is the spatial (contravariant) components 
of the stress tensor, p the mass density, E iJk the alter
nating tensor, and I j and b j denote the spahal components 
of the body force and acceleration vectors, respectively. 
The stress tensor Tij, across a surface whose unit out
ward normal vector is n, is related to the traction vector 
ti; 

(2.3) 

The charge equation of electrostatics may be written as 

Di:i == 0 in 'l) x [to' 00), (2.4) 

where Di is the component of electric displacement. In 
Eqs. (2.1 )-(2.4), to denotes some prescribed value and/ 
or the initial instant of time t, and 'l) the volume of the 
body with its boundary surface S. 

The constitutive equations of piezoelectricity are given 
by 
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(2.5) 

(2.6) 

where Si' represents the components of the infinitesimal 
strain te~sor, E i the components of the quasi static elec
tric field,and C·jkl,Cijk,and Cij are the components of 
elastic stiffness, piezoelectric strain constant and di
electric permittivity, respectively. By virtue of Eqs. 
(2.5) and (2.6), the equations of linear elastodynamics 
are coupled to the charge equation of electrostatics. 
The following symmetry relations hold 

Cijkl == Cjikl == Chlij == Cijlh, Cij = Cji 
(2.7) 

for the material coefficients. 

The components of electric field and mechanical strain 
are expressed in terms of the mechanical displacement 
vector u and the electric potential cp by 

Sij = Hu i;} + Uj;i), 

Ei=-CP,i' 

(2.8) 

(2.9) 

With the help of Eqs. (2. 1), (2. 4)-(2. 6) and (2.8)-(2.9), 
we readily get the equations 

fj + Cijkluk;li + Ckijcp ,ki - piij::c 0, 

Cki} U i ;jk - Cijcp ,i} = 0, (2.10) 

which govern the electric potential cp and the displace
ment u. 
Let S, SN' and Sc' respectively, stand for the entire bound
ary surface of the body, the portion of S on which the t i 

and/or the surface charge a are prescribed, and the 
portion of S on which the u i and/or cp are prescribed. 
Hence, the boundary conditions may be expressed by 

U* - niTij == 0, a* - npt == 0 on SN x [to' CXl), (2,11) 

u~-Ui==O, CP. - cp == 0 on Sc x [to, CXl), (2.12) 
and 

SN n Sc == 0, SN U Sc = S. (2.13) 

The aforementioned equations together with the initial 
conditions in the volume 'D, namely, 

u(ei,tO) = w*(e t ) in'D(to)*' 

E(ei,to) == E*(8 i ) (2.14) 

completely describe the initial-mixed boundary value 
problem of interest. (The symbol 'D(t) refers to the 
volume 'D at time t.) As subsequently shown, the above 
initial and boundary conditions are sufficient to ensure 
a unique solution provided that a positive-definite intern
al energy function U exists. 

Lastly, we define the internal energy density by 

the electric enthalpy density H by 

H == ~TijSij - ~DiEi =: U - DiE; 

so that 
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(2.15) 

(2.16) 

(2.17) 

and the kinetic energy density K by 

(2.18) 

for future convenience. 

Before closing this section, we note that the governing 
equationS of linear piezoelectricity, (2.1)-(2. 8), are 
essentially contained in Ref. 6 but in Cartesian co
ordinates. 

3. VARIATIONAL FORMULATION 

For later use, we now proceed to formulate a variational 
theorem by means of Hamilton's principle. 9 First, we 
state a generalized version of Hamilton's principle by 

OJ == 6 (1 £,dt == 0 (3.1a) 
to 

with 

£, = Je - n + JC. (3.1b) 

Here, £, is the Lagrangian function, Je the total kinetic 
energy, n the total enthalpy and JC the virtual work due 
to the external forces. For a piezoelectric body 'D + S, 
having no Singularities of any kind and subject to the 
prescribed surface tractions and charges, 3<:, nand JC 
may be expressed by 

Je == j1jKdv, n == j'l)Hdv, 

JC == JdiUjdv + J"Yi(U i - ui) + a(cp - cp*)]ds 

+ JSN(t~Ui + o*cp)ds. (3.2) 

Next, to establish the variational theorem, we carry out 
the indicated variations in each term of Eq. (3.1). Hence, 
the Variation of the first term is found to be 

t 
6.~ 1 Jedt 

o 

This may be written in the form 

j t ft J Ii 1 Jedt == - 1 dt 11,pU i OU t du 
to to 

(3.3b) 

since OUi vanishes at to and t 1> as is customary in the 
use of Hamilton's principle. 

The variation of the second term is 

(3.4a) 

Considering Eqs. (2. 8), (2.13) and (2.17), and using 
Green's transformation, we finally obtain the following 
equation. 

Ii t1 ndt = t 1dt ft n i(T 1f6u j + Di6cp)dS 
to to'N 

t - f 1 dt J ITij; i liU j + Di; i 6cp ]dv. (3.4b) 
til 'tJ 

Lastly, the variation of the third term is of the form 
t t t 

Ii f 1JCdt == f 1 dt J f i6u idv + f 1 dt j (t~6Ui + o.6cp)dS 
~ ~ ~ 

+ t1dt fsd(U j - ui)oti + (cp - cp*)6a]dS. (3.5) 
to 
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Substituting Eqs. (3. 3)-(3. 5) into Eq. (3.1) and combining 
the volume and surface integrals, we arrive at the equa
tion 

OJ == tl f'O[(Tij; i + Ij - piU )ou. + (Di; i)ocp] dv 
to J 

to 
+ Jt1dt(frN[(ti - njTij)ou j + (0'* - niDi )ocp]dS 

+ .kc£(Ui - ufjot i + (cp - cp*)OO']dS) == O. (3.6) 

By the use of the fundamental lemma of the calculus of 
variations the following theorem is concluded. 

Theorem' Give a regular region10 of space 'D+ Swith 
boundary S(SN U Sc == S) in a Euclidean 3-space,and 
defined all the boundary value problems which admit the 
functional J has zero first variation for all admissible 
variations of the field quantities; if and only if. 
u. E C(O,2) D. E C(l,O) Tij E C(1.0) and rn E C(O,o) 

t , l. , ,"t" 

satisfy Eqs. (2.1), (2. 4), (2.11) and (2.12) as appropriate 
Euler equations. [C (m,n) represents the functions with 
derivatives of order up to and including (m) and (n) with 
respect to 0 i and t, respectively. J 
Similar theorems have also been discussed, among 
others, by Tiersten6 ,1l and references therein. 

4. GEOMETRY OF THE FINITE SURFACE. 
KINEMATICS 

Consider a piezoelectric finite surface embedded in a 
Euclidean 3-space. Let Oi denote a system of right
handed geodesic normal coordinates 12 in this space. 
0 3 == 0 defines the surface which coincides with the 
midsurface a of shell. The 01 _ and 02-curve are situat
ed on a. The upper face of the shell au and its lower 
face a1 are indicated by the equations 03 == hand 03 = 
- h, respectively. The edge boundary of the shell S e is 
a right cylindrical surface with generators perpendi
cular to a, and it intersects a along a Jordan curve ~. 
The metric tensor at any point of the shell space 'D is 
associated with that of a by the relations 

ga8 == 1-I~l-Iga"A' ga3 == 0, g33 == 1 (4.1a) 

with 
I-IB == 0B - 03bg, (4.1b) 

where aa8 and b et8 denote the covariant components of 
the first and second fundamental forms of a. Its third 
fundamental form is defined by 

CaB = bao b8°. (4.2) 

The elements of volume dv, of Surface dS on S, of area 
dA on a, and of line ds along ~ are of the forms 

dv = Jgd0 1d0 2 d(}3 == dSd0 3 == I-IdAd0 3 , 

nadS == 1-1 lJ", dsdO 3, 1-1 == 11-18 1 == (g/a)1I2, 

a == I aaB I, g == Igijl (4.3) 

in which lJ is the unit vector normal to ~. 

The shifted13 ,14 displacement components of a generic 
point in 'D are represented by 

N 

uj(i}j,t) == 6 Pn(03)u[n)(oa,t) (4.4) 
n~O 

and the electric potential by 

N 

cp(Oi,t) = 6 Qn(03)cp(n)(oa,t). (4.5) 
n~O 
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From the mathematical standpoint, a separation of 
variables solution is sought for the aforementioned field 
equations. Therefore, the functions in Eqs. (4.4) and 
(4.5) are unknown a priori and independent functions 
defined in 'D. Further, we assume that cp (n) and u/n) 
exist and are functions of class C(1,O) and C(2,2), 

respectively. The functions Pn and Q n of the form 

(4.6) 

are to be used in this analysis. 

In view of Eqs. (2. 8), (2. 9) and (4.4)-(4.7), we obtain the 
strain distribution as 

N 

Sij = 6(8 3)ns fj)(8 a,t) 
n=O 

with 
S (n) 1 [(n) (n) 2b (n) 

a8 = "2 Ualtl + UBla - a8U 3 

_ (bvu(n-1) + bvU(n-1)_ 2C U(n-1») 
a v I B 8 "I a as 3 , 

S(n) = .!.[(n + 1)u(n+1) + U(n) - (n -1)b V u(n)] 
a3 3 a 3,a a " , 

S(n) == (n + 1)u
3
(n+l) 

33 ' 

and the electric field as 
N 

E
j 

== 6(83)n.E~n)(oa,t) 

with 
n=O 

(4.7a) 

(4.7b) 

(4.8a) 

(4.8b) 

Here, u/n), cp(n),Sdn) and Ej(n) are henceforth termed the 
displacement, electric potential, mechanical strain and 
electric field components of order n, respectively. 

5. GOVERNING EOUATIONS OF PIEZOELECTRIC 
CRYSTAL SURFACES 

In this section, the variational theorem (3.6) together 
with the series expansions (4.4)- (4.6) is applied to 
establish the macroscopic field equations and the natur
al boundary conditions of piezoelectric crystal finite 
surfaces. These equations are then supplemented with 
the appropriate initial conditions and constitutive equa
tions. 

Before proceeding further, we define the stress, body 
force, electric displacement, and effective load result
ants of order n by 

T ij _ T ji _ fh jj(1l3)nde 3 
(n) - (n) - -h I-IT 0 , 

{T~(n),D~nJ == f_>{t~,O'*}(e3)nde3, 
{ i i} f h 3 n{ j i} 3 F(n) , D(n) == _hl-l(O) I ,D dO , 

S~(n) = T:(n) - b:n'(n+l) , 

{ j j] 3i 3 n 
P(n),R(n) == [/-IT (0) h~3 ={k, -h}, 

{E (n)' F(n)} == [W D3(8
3

)n] IS 3 ={ h. -h} , 

(5.1a) 

S (n) == E (n) - F(n)' 

a Fa pa a a (Fv v " 
T(n) == (n)+ (n)-R(n)-bv (n+l) + p(n+1)-R(n+1))' 

3 3 3 3 
T(n) = F(n) + p(n) - R (n)' 

and the acceleration resultants of order n by 
N 

A (n) '\' I - (m) 
i = L.J (n+m)u j 

m=O 
(5.1b) 
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with 
\ 2 [Koh 2 j(n + 3) + l/(n + l»)hn+l for n = 2r 

I(n) = (5.lc) 

? - 4Hohn +2 /(n + 2) for n = 2r + 1. 

Here,Ho and Ko are the mean and Gaussian curvatures 
of the surface <t, and they can be expressed as 

(5.2) 

Now, consider first the volume integral in Eq. (3. 6), that 
is, 

t h 
OJl = J IdtJ J 3 [(Tii; i + fi - pui)OU j to (i. e =-h 

+ (Di; i)ocp ]lldAdlJ3. (5.3) 

Substituting the series expansions (4.4)-(4.6) into this 
equation, integrating across the thickness and replaCing 
the resultants (5.1), we arrive at the equation 

OJi = (1 dt fCl. C~o (V:n)6u~n) + <P (n)6cp (n~ dA (5.4a) 

with 
a (fla b a 8 v ) a v3 (3 a 

V(n) = 1(n) - v 7(n+l) 18 - bv T(n) - n T(n-l) 
ex. 3v Ci •• ct 

- bv T(n» + T(n)- pA(n)' 

V3 a3 a6 a6 33 3 pA" 3 
(n) = T(n) la + baST(n) - Ca8 7(n+l)- nT(n-l) + T(n) - (n)' 

a 3 
<P(n) = D(n)la - nD(n-l) + Sen), (5.4b) 

where we have made use of the following identities14 

IlIl~Ta6;1l= (1l1l~TA.6)16 -1l1l:::'(j.L-l)~btT"3 - j.Lb~J3", 

j.LT3";a = (fJT3a)l" + fJfJ~bv8T"6 -1l(1l-1):;b~T33, (5.4c) 

Il~T"3;3 = (Il~Ta3),3' fJ,3 =-Il(fJ-l)gb~, 

IlD";a = (fJD")la -1l(1l-1)~b~D3. 

The surface integrals in Eq. (3.6) are 

and 

Carrying out the integrations as in the volume integral, 
we get the equations . 

OJ~ = t 1
dt ifJeds(t(V~(n)6Ui + <P7n)6CP(n)\ , 

to n=O ) (5.8a) 

OJ~ = t1 dt fCl. ~ [(u:n) - u7(n»6t i + (cp(") - cp~»6a]dA, 
o ~ n:::O 

where 
a" 8a ex flv 

V*(n) = S*(n) - l/a(T(n) - bv T(n+l»' 
3 3 a3 

V *(n) = T * (n) - V" T(n) , 

* * " <P(n) == D(n) - v"D(n)' (5.8b) 

With the help of Eqs. (5. 4) and (5.8), the variational 
equation (3.6) can be written in the form 

OJ = OJZ = o. 
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(5.9) 

Setting this equation equal to zero for the arbitrary and 
independent variations of the displacement, surface 
tractions and charge, and electric potential components, 
the hierarchy of the two-dimensional apprOXimate field 
equations and the corresponding natural boundary condi
tions are found,and they are given as follows: 

i 
V(n) = 0, <P (n) = 0 on <t x [to, <Xl) (5. lOa) 

and 

(5. lOb) 

it~) - u-*(n) = 0 * 0 t> x [t ) , , CP{n)-CPc,,)= onUo c 0,<Xl, 

n=0,1,2,···,N. 

A set of initial conditions based on Eqs. (2.14) reads as 

u(n)(e",to) = v*(n)(8 a ), u(n)(e",to) = w*(n)(8"), 

CP(n)(e
a

, tol = \{I~)(e") on <t x [to, <Xl). (5.11) 

The distributions (4.7) and (4.8) in conjunction with 
Eqs. (2.5), (2. 6) and (5.1) yield the macroscopic con
stitutive relations 

(5.12) 

Thus far, a higher order linear theory of piezoelectric 
crystal surfaces has been established. This consists 
of the macroscopic field equations (5.8), the strain
displacement and electric field-electric potential rela
tions (4.7) and (4.8), the initial and natural boundary 
conditions (5.10) and (5.11), and the constitutive equa
tions (5.12). 

6. UNIQUENESS OF SOLUTIONS 

In the foregoing analYSiS, an initial-mixed boundary 
value problem is completely described by the governing 
equations of piezoelectric crystal finite surfaces. The 
uniqueness of solutions of this problem is now dis
cussed as in the classical Neumann manner. According
ly, for the uniqueness of solutions, it is enough to show 
that the homogeneous problem (homogeneous field equa
tions' homogeneous bowldary conditions and so on) has 
only the trivial solution. 

Let E and W, respectively, stand for the kinetic and 
internal energies per unit area of <to From Eq. (2. 18), 
we have the rate of the kinetic energy density 

(6.1) 

Upon use of Eqs. (4.4) and (5.1), this density rate may 
be written in the form 

N 
• '" ··i ':'(n) 
E= LJPA(n)u; . 

n=O 
(6.2) 

On account of Eq~. (2.5-9) and (2.15), we may express 
the energy rate W 

. fh. fh 
W = IlUd83 = (TijU;.). - D/p j)fJde3. 

-h -h' • 
(6.3) 

Substituting Eqs. (4. 4) lilnd (4.5) into Eq. (6. 3) and then 
integrating, we obtain W in terms of the stress and 
charge resultants (5.1) as follows 
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.... a T 311)..:.(n) ( a6 b TaB 33 )..!(n) 
- fW Il (n) U a + Ca6 1(n+l) - a6 (n) + nT(n_l) U 3 

3a..!(n) a .(n) D3 • (n)] + T(n) U3 ,a - D(n)CfJ,a - n (n-1)CfJ , (6.4) 

where the relations between the derivatives of space and 
surface vectors 14 

U a l 3 = l-I:'x ulI,3' 

are considered. 
ual6 = I-Ig(u oIl6- b a8u3 

Now, consider the following equation for the homogeneous 
problem, 

N 

tidt J dA 6 Vi ii(n) ,; 0 (6.5) 
to d n = ° (n) I , 

where we have used Eqs. (5.10). By applying Green's 
transformations, and using Eqs. (5. 4), (6. 2) and (6.4), we 
arrive at the equation 

N 

- tldt J (W + E)dA + J\1t if> IIIl 6 (wtn~ii}n) - Dtn)<p(nJ)ds 
to (l to ('l n ~o 

t N 

+ J
t 
IdtJ

d 
6 (S;n)iit) + W(n)<p(n»)dA =0 (6.6a) 

o n =0 

with 

(X 3 ) 
W(n) = - D(n)1 (X - nD(n -1)' (6.6b 

This equation can readily be put to the form 

+ J ~(sj ii~n) + W riJ(n»)dA) 
d n~ (n) I (n)'I' 7 (6.7) 

in which Eq. (3. 2) is taken into account. If the line and 
area integrals in Eq. (6. 7) vanish, e.g., as a result of 
Eqs. (5.10) and (5.11), then we write down 

(6.8) 

Guided by the usual arguments based on the positive
definiteness of the kinetic and internal energies X and 
L, we may write 

(6.9) 

which lead to the uniqueness of solutions. We then state 
the following theorem. 

Theorem: Given a regular region of finite space 'D + S 
with boundary S(S = SN USc, SN n Sc = 0) in a Eucli
dean 3-space, then there exist at most one-single 
valued vector functions u)n) E C(2 ,2) and CfJ (n) E C (1 ,0) in 
'D + S at to ::5 t < w, which satisfy the governing equations 
of piezoelectric crystal surfaces, Le.,Eqs. (4. 7)-(4. 8) 
and (5.10)-(5.12). 
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Further, it is evident that not only the boundary condi
tions (5.10) but to prescribe any member of each prod
uct in the line and area integrals of (6.7) assures the 
uniqueness of solutions. 

7. CONCLUSION 

A rigorous derivation of the theory of piezoelectric 
crystal finite surfaces has been established on the basis 
of the linear theory of piezoelectricity. The theory is 
constructed in a systematic and consistent manner by 
means of a method of series expansion and a variational 
theorem deduced from Hamilton's principle. It consists 
of a hierarchy of two-dimensional approximate equa
tions of motion, charge equation of electrostatics, initial 
and natural boundary conditions, strain-displacement and 
electric field-electric potential relations, and macro
scopic constitutive equations. 

For a piezoelectric crystal plane, our results can be 
brought in general agreement with those of Mindlin and 
Tiersten,6 if the effects of curvature are abrogated in 
Eqs. (4. 7), (5. 8), and (5.12), Le.bg = O. However, this 
presentation is more general regarding the theorems 

In clOSing, we note that the extension of this theory to 
Cosserat media 14 and to piezoelectric composites as 
well as to dielectrics is straightforward. The applica
tions of the theory remain to be exhibited. We deal with 
some of them in a forthcoming article. 15 
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We use the notion of split extension algebra to embody a given invariance algebra of a quantum 
mechanical system, a realization of which is known in terms of some variables, in a richer invariance 
algebra expressed in terms of the same variables. By applying this procedure to a free system of 
particles we show how to obtain the invariance under the Schriidinger algebra and we build a bigger 
invariance algebra which describes a system of noninteracting particles, for example the asymptotic 
states in a nonrelativistic scattering problem. 

1. INTRODUCTION 

As long as we do not take into account an explicit time 
dependence, the notion of symmetry algebra for a con
servative system is defined by the property that all its 
own generators commute with the Hamiltonian of the 
problem and furnish constants of motion. In the case of 
explicitly time-dependent transformations it has been 
shown1 that the corresponding generators leave invari
ant the Hamiltonian of the Schrodinger equation iff: 

[H, S(t)] = i a~t(t). ( 1) 

Lipkin noted that if 1/1 is an eigenfunction of H, SI/I can
not be an eigenfunction of H with the same eigenvalue 
[in the case where Eq. (1) is not trivially satisfied]. 
Hence S (t) satisfying Eq. (1) generates families of states 
having different energies and provides informations 
about the energy spectrum of H: a time-dependent sym
metry algebra works as a spectrum generating algebra, 
which increases the own interest of such a concept. 

Moreover it is easy to see that all the explicit time 
derivatives of S(t) satisfying Eq. (1) furnish invariance 
properties too. In the Simplest nontrivial case where 
S(t) is a linear function of the time, as/at is time-inde
pendent and commutes with H. This is the case for the 
generators of the pure Galilean transformations 
Sj (t) == Kj = M R j - Ij t (] = 1,2,3) which verify: 

[H,Kj ] = - iIj, [H, Ij] = o. 
Translational invariance generated by p. is then auto
matically involved by the requirement of pure Galilean 
invariance generated by K. "It is impossible to con
sider the former without the latter," said Lipkin, and 
the constraints brought on the interaction by the invar
iance under Galilean "boosts" imply those required by 
the invariance under translations. Then this remark 
emphasizes the interest to work as far as possible with 
large invariance algebras. 

It appears, from this short discussion, that the con
cept of explicit time-dependent symmetry makes co
exist two mathematical notions: links between some 
generators of the invariance algebras by integration 
with respect to time, and correspondingly particular 
positions of certain subalgebras in the considered in
variance algebra. 

At this step, it has seemed natural to us to consider 
the following problem: being given an elementary invar
iance algebra associated to an Hamiltonian describing 
a physical system, is it possible to embody this algebra 
into a bigger invariance one? It is an aim of this paper 
to answer this question. In fact the hypothesis of the 
problem can be enlarged and we propose here an 
algebraic method to embody an elementary invariance 

algebra for an unspecified Hamiltonian into a larger 
time-dependent invariance algebra a realization of which 
can be given in terms of the same observables used for 
the realization of the starting algebra. 

This paper will be divided into three parts: 

-In Sec. 2 we discuss the correspondence between invar
iance properties in the SchrOdinger's picture and non
explicit time-dependent observables in the Heisenberg's 
picture. 
-In Sec. 3 we show how the mathematical frame fur
nished by the notion of derivation algebra can be used to 
increase a given invariance algebra called a "germ" in 
our terminology. 
-Section 4 deals with two applications of the above 
method. By chOOSing as germs two subalgebras of the 
extended Galilean algebra we generate as invariance 
algebra the Schrodinger algebra and a bigger one which 
appears as the smallest invariance algebra able to 
describe a system of noninteracting particles. 

2. TIME-DEPENDENT INVARIANCE ALGEBRA IN 
THE SCHRODINGER AND HEISENBERG PICTURES 

It is easy to deduce from Eq. (1) that the commutator 
[S1> S 2] = S 1 S 2 -- 52 S1 for any invariance generators 
Sl and S2 is an invariance generator too, hence the 
invariance properties of a given Hamiltonian form a 
Lie algebra. Now Eq. (1) does not imply it is a finite 
dimensional Lie algebra, but we restrict ourselves to a 
finite one for mathematical convenience. 

Let us therefore consider a finite N-dimensional in
variance algebra. In the Schrodinger picture each 
generator is satisfying the relations 

as. N 
[H,SP)] = i _J = i ~CP!Sk(t) Vj = 1, •.. ,N, (2) 

at k~l 

where the coefficients CPt are time-independent. 
Such generators possess the following important 

property: they do not depend explicitly on time in the 
Heisenberg picture. Indeed in going from the Schro
dinger representation to the Heisenberg one, any 
operator n changes according to the rule: 

(3) 

and for any generator verifying (1) it is easy to see that 

as 
~ = eiHt(i[H,S] + as/at)e- iHt = o. 
at 

Consequently, SH does not depend explicitly on time and, 
from Eq. (3), takes its value for t = O. We shall write: 

(4) 
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Hence the generators of an invariance algebra do not 
depend explicitly upon time in the Heisenberg picture 
but do not commute necessarily with H. More precisely 
the generators So generate an algebra So isomorphic to 
the starting invariance algebra S(t) since each So de
duces from a corresponding 5 by means of the auto
morphism defined in Eq. (3). 

Conversely, to any algebra of observables which do 
not depend explicitly on time corresponds an invariance 
algebra isomorphic to it in the Schrodinger picture. 
Indeed the explicit time derivative of S(t) defined by 

gives exactly the invariance condition (1). 

Obviously each coefficient in the development of S(t) 
in powers of t 

5(t) = So - it[H, Sol + ... 

(5) 

+ (- it)m/m! • [H[H[H' •. [H, Sol' .• ] + (6) 
'~~~ 

m times 

is a generator of the algebra So' Then it should be 
noticed that in the case where the development is bound
less, the explicit time dependence of the corresponding 
S(t) is an exponential one. But if there exists m such 
that 

[H[H' •. [H, So], •. ] = 0, 
~,,-------' 

m + 1 

S(t) is a polynomial of highest degree m in t. In this 
last case the coefficient of t m is identical in both pic
tures since it commutes with H. 

It is worth noticing that this last results should be 
obtained directly from the right-hand equation contained 
in (2) which furnishes a system of N linear differential 
equations of the first order with constant coefficients 
when j runs from 1 to N. The resolution of this system 
determines the explicit time dependence of the SP) and 
leads to the above properties. 

As it was already noticed in the Introduction, chains of 
elements can be obtained in the algebra S(t) by succes
sive derivations with respect to the time: S(t), as(t)/at, 
a2 S(L)/at 2 , ••• but also by repeated. action of ad(H) if 
one remembers Eq. (1). Obviously the isomorphism 
between S(t) and So insures that ... algebra So but in 
the Heisenberg picture the chains of elements can only 
be obtained by repeated action of ad(H). Hence in prac
tice the relationships between generators appear when 
the whole algebra is decomposed under the action of H. 

We conclude this section by remarking that from a 
mathematical point of view the algebras So and S(t) are 
the same algebra depending on t as a real parameter. 
An interesting consequence is that the Casimir operators 
of this algebra are time independent, such an example is 
given in Ref. 2. 

3. EXTENSION OF A GIVEN INVARIANCE ALGEBRA 

We start with a well-defined invariance algebra: the 
germ So a realization of which is given in the Heisen
berg picture in terms of some noncommuting observ
abIes wj{j = 1, •.. , n) used to describe a quantum 
mechamcal system. We wish to embody this germ into 
a bigger algebra able to yield new invariance properties 
in terms of the same variables. Now we insist on the 
fact that our aim is not to extend the germ by another 
invariance algebra expressed in terms of other observ
abIes which was the case when one tried to extend the 
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Poincare algebra by internal symmetry such as S U(3) 
for example. 

In our approach the Hamiltonian is not given explicitly 
and we have in mind to exhibit the constraints on H which 
come from the embedding of the germ into a larger in
variance algebra. To solve this problem it is not suf
ficient to give a realization of a larger algebra chosen 
in the enveloping algebra &(t) of the algebra t) generated 
by the observables wj • Indeed in this way one doesn't 
know the action of the larger algebra on H. In the same 
mind it is not possible to extend the germ by time inte
gration of some generators, that is to introduce new 
operators such that Z = J ISdt = Zo' + MR·t - 1P t 2 in 
the example of the infroductlOn. In tfiis casJ the coin
mutation relations withH are well defined: [H,Z.] = iK. 
but we have not constructed a bigger invariance Jalgebr~ 
since commutators like [Kj' Zkl and [Pj , Zkl are not deter
mined. It is then necessary to build an algebraic scheme 
which provides an algebra IT" containing the germ, go and 
making appear the commutation relations of H with the 
new introduced generators. 

By hypothesis go is a subalgebra of &(t) and the 
largest subalgebra of IT" which can be set in isomorphism 
with a subalgebra of &(t) will be a candidate to the 
wanted extended algebra So. The explicit time realiza
tion, i.e., the invariance algebra S(t) is then obtained by 
the automorphism defined in Eq. (5). 

In order to construct the abovementioned Lie algebra 
IT" we shall use a mathematical tool closely connected to 
the structure of a given Lie algebra which is the Lie 
algebra of its automorphisms: the derivation algebra. 
This notion is very natural and strongly suggested by 
the fact that in Sec. 2 we have already considered H as a 
derivation acting on the invariance algebra. On the other 
hand, it is very simple to extend a Lie algebra by its 
derivation algebra. 3 Indeed let ct be a finite dimensional 
Lie algebra and :D(ct) the derivation algebra, it is then 
possible to construct the split extension of :D (ct) by ct, 
also called the holomorph of ct, which is the semidirect 
sum ct 0 :1)( Ci). 4 The elements of this new algebra are 
the ordered pairs (a, d) where a and d belong, respec
tively, to ct and :D(ct), and the Lie product is defined by 

[(a, d), (a', d') 1 = ([a, a'l + d(a') - d'(a), [d, d'J). (7) 

This construction gives a meaning to the brackets [d, a'l, 
indeed: 

[d, a'l == [(0, d), (a', 0)] = (d(a'), 0) = d(a') E <t, (8) 

which is just the action of the derivations on the ele
ments of the initial algebra. 

Let us now apply this construction to a given germ So' 
In general the Hamiltonian belongs to the germ and the 
suggested method is able to make new generators d 
appear, the action of which on H is not trivial, Le., d(H) = 
So, with So E So and So ;>' O. Therefore they correspond 
to time integrals of generators of the germ in the Schro
dinger picture, but it should be noticed that we have not 
succeeded to exhibit an extension giving rise to integra
tion of Galilean boosts. 

Now it happens that the Hamiltonian doesn't appear 
alone or accompanied in the derived algebra of the given 
invariance algebra. It is then possible to exclude H out 
of the germ and, owing to its action on the invariance 
algebra, we are sure to identify H in the derivation 
algebra. We will show in the next section that this pro
posal is not purely academic but allows us to show some 
interesting links between some invariance algebras. 
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4. APPLICATIONS TO A FREE SYSTEM OF PARTICLES 

In general the Galilei group is considered as the full 
kinematical invariance group of the Hamiltonian of a 
free system, but it has been recently shown by Niederer5 

that a larger group of space-time transformations: the 
Schrodinger group, leaves invariant the free Schrodinger 
equation. In fact it has been shown2 that this embedding 
of the Galilei group strongly limits the form of the 
interaction between the constituent particles of the sys
tem. We propose to apply the technic above described to 
generate the Schrodinger algebra and moreover to 
exhibit a larger invariance algebra which appears as a 
limit case in the description of a system of particles, 
since no interaction can take place between them. 

We recall that a system of particles can be set in 
correspondence with an unirrep of a central extension 
G of the Galilei group, the generator realizations of 
which, are given, in terms of canonical coordinates 
qj(/l) andPj(/l) corresponding to each mass point m(/l), 
/l == 1, 2, ..• , N, by 

N N 

Ij == 6 Pj(/l), 
ilo 1 

M == 6 m(/l), 
IF1 

Jj ::: 6 (q(/l) A p(/l))j , 

K j = L; m(/l)qj(/l) - Pjt = MXj - Pjt, 
iI 

N p2(/l) 
H == 6 -- + V == T + V. 

iI= 12m /-l 

Jl 

The nonzero commutation relations are given by 

[H,Kj]::: - iPj • 

(9) 

(10) 

(A)-Let us choose as a first example the derived ex
tended Galilei group generated by {Kj, Pi ,Jj ,M},j == 1,2, 
3, Le., we take as a germ the corresponding Lie algebra 
So in the Heisenberg picture. 

As it has been shown in Ref. 6 the derivation algebra 
5:>(So) contains the subalgebra of derivations isomorphic 
to the derived nonextended Galilean algebra and four 
supplementary generators which form between them a 
subalgebra isomorphic to 8l(2, R). The problem consists 
now in finding in the envelopping associative algebra 
S(q(/l), p(j.t)) the largest subalgebra isomorphic to a 
subalgebra of (f ::: So 0 5:>(go) and including go' It is 
easy to see that we cannot realize simultaneously the 
whole inner derivation algebra, and if we consider only 
a subalgebra, the realization coincides with that of the 
corresponding generators of So and there is a redun
dance. Now the subalgebra 8l(2, R) can be decomposed 
into the direct sum SU(1, 1) Efl CRP:!' but the one-parameter 
subalgebra CR

D2 
acts as a dilatation on M and obviously 

cannot be set in correspondence with any element of 
Seq, p) and then must be rejected. 

Among the SU(1, 1) generators, one of them can be 
recognized, owing to its action on So. as the Hamiltonian 
of the system. The others, denoted Co and Do, are given 
by 

N 

Co = t 6 m(/l)q2(/l), 
Jl01 

(11) 
3 N 

Do == - t 6 6 [qj(f.\),pj(f.\)]+. 
)=1 Jl=1 

Their commutation relations are 
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[H,DO]::: 2iH, 
(12) 

And by using the transformation (5) we obtain the ex
plicit time-dependent generators of the extended invar
iance algebra in the Schrodinger picture: 

D::: 2Ht + Do, (13) 

In fact this invariance algebra obtained from the deri
vations of S' is the Schrodinger algebra SCh ::: S' 0 
SU(I, 1), the commutation relations of which are given 
by (10), (12) and following (8) by the nontrivial actions 
of the derivations on the germ: 

(B)-As a second example we will consider a subalgebra 
in the preceding germ namely the Heisenberg algebra 
Jeo generated by {l(., Pj , M}. The loss of the rotational 
invariance, i.e., of tbe semisimple subalgebra generated 
by J, leads to a richer derivation algebra. 6 Indeed the 
inner derivations form a six-dimensional Abelian algebra 
and we obtain a basis of 5:>(JCo) by adding 22 generators 
which generate a subalgebra isomorphic to Sp(6, R) Ell 
CRil) • For the same reasons as previously, we must 
negl~ct in Jeo 0 5:> (Jeo) the generators corresponding to 
the inner derivations and to the dilatation of the mass 
D 2 • Finally it is possible to give a realization of the 
semidirect sum <tso ::: Jeo 0 (SP(6, R))o' Now it appears 
a new feature: the Hamiltonian is fully determined and 
cannot contain any interaction: H == 61'[P 2 (/l)/2mJ1.]. The 
realization of a convenient basis of the (SP(6, R))o 
algebra is given by 

N 

Rjk ::: ~ 6 [Pj(/-I),qk(/-I))+, j,k = 1,2,3, 
1'''1 

N 

Sjk == 6 m(/-I)qj(/l)qk(/l)::: Skj' 
1'°1 

(15) 

T-k == i Pj(j.t)h(/-I) ::: T
k 

.• 
) 1'=1 m(/-I) ) 

It is easy to see that (i ~ contains the extended Schro
o 

dinger algebra and we have the following relations in 
terms of the generators of the above basis: 

3 

Co == t ~ S .. , 
j o l )J 

3 

H == ~ 6 T .. , 
j=l 11 

3 

Do==-L;R ..• 
j=1 )) 

(16) 

The nonzero commutation relations of (i s are given by 
o 

[Rjk,Rlm ] == i(6 kl Rjm - 6jmR1k ), 

[Rjk' Tim]::: i(6kl Tim + 6km 1J/), 

[Rjk' Slm]::: - i(6jl Skm + 6jm Skzl, (17) 

[Sjk' Tim]::: i(6jlRmk + 6jmRZk + OuRmj + 0kmRZj), 

[Rkl , K Oj ] ::: - iojkKO I' [Rk/ ,Pj] ::: iO jl P k, 

[SkPIj]::: i(OjkKO/ + 6j /KOk )' 

[TkPKO.]::: - i(OjkP/ + °jIPk )· 
J 

Owing to the above-mentioned inclusion SChv C (iso it 
remains only to give the explicit time dependence of the 
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last 15 generators. Following the method described in 
Sec. 2 we decompose a~ under the action of H and from 

o 
(17) firstly we obtain 

[H ,Rjk + Rkj ] = - 2i Tjk 

(j ;>0 k). (18) 

Then the transformation (5) furnishes the three follow
ing generators: 

Qjk = Tjkl2 - (Rjk + Rk)1 + ~k' j;>O k, (19) 

and also the six explicit time derivati ves Qjk and Qjk' 

The two last chains correspond to the commutation 
relations which determine H and which can be written 
under the convenient but redundant following form: 

3 

[H,Sjj - i~ Skk] = - 2i(Rjj - i~Rkk)' 
k~l k (20) 

of which we deduce two independent generators 

Qjj = (Tjj - i ~ Tkk )/ 2 - 2(Rjj -' i ~Rkk)l 
k k 

- (Sjj - t~ Skk);-1.2.3 (21) 

such that 
3 

~Q .. = 0, 
j~ 1 JJ 

and their explicit time derivatives. 

In summary we will notice that our approach allowed 
us to build the as algebra which is the invariance 
algebra of a free system of noninteracting particles. As 
we have seen a ~ contains the Schrodinger algebra which 
is the largest algebra of space-time transformations 
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which leaves invariant the free Schrodinger equation; in 
fact, as it has been shown in Ref. 2, the Schrodinger in
variance still allows us to introduce some types of inter
action between particles, while the a~ algebra, which 
comes from the derivations of the Heisenberg algebra, 
does not offer such a possibility and can uniquely des
cribe a system of particles without interaction. 

CONCLUSION 

The techniques we proposed allows us to construct 
the following chain of algebras: JC c g C S"Ch C a ~. In 
this chain the number of invariance generators increase 
while the internal interaction melts. As a direct con
sequence of this property it may be asked what kinds of 
external fields are compatible with the above invariance 
algebras? We will treat this subject in a forthcoming 
paper. 

Finally we emphasize the property of the algebra 
a,1 = JC 0 Sp(6, R) which really appears as the candidate 
to describe the asymptotic states in nonrelativistic 
scattering problems. 
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Erratum: KS-related f -g couples as exact vacuum solutions of 
Salam's two-tensor theory [J. Math. Phys. 15, 129 (1974)] 

Helmuth K. Urbantke 

Institut fur Theoretische Physik, Universitiit Wien, Vienna, Austria 
(Received 13 August 1974) 

Concerning the KS-related solutions to theJ-g equa
tions, an additional assumption has been made, but not 
stated, which restricts the solutions to the class given 
in the paper. Thus, the abstract is to read as follows: 
"The exact solutions ... are determined for the case that 
the two tensors differ onlyby the tensor product of a 

2257 Journal of Mathematical Physics, Vol. 15, No. 12, December 1974 

principal null vector field by itself. 0 • " What is shown 
then is that this principal null vector field must be mul
tiple and have vanishing optical scalars. The proof re
lies on Eq. (18) of the paper which would be different if 
the null vector field were not a principal one, i. e., if 
expression (2.26a) of Ref. 9 were nonzero. 

Copyright © 1974 American Institute of Physics 2257 
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